Lecture 7: Nodal Analysis

Lecturer: Dr. Vinita Vasudevan

With initial condition

Example 1:

$$
\begin{aligned}
\frac{4}{s} & =12 I(s)+3 s I(s)+12 \\
I(s) & =\underbrace{\frac{4}{s} \frac{1}{4+s}}-\underbrace{\frac{4}{4+s}}
\end{aligned}
$$

Input Initial condition

$$
i(t)=\underbrace{\frac{1}{3}\left(1-e^{-4 t}\right) u(t)}-\underbrace{4 e^{-4 t}}
$$

zero state solution zero input solution
So, the above circuit is linear w.r.t. input and state respectively, But as a complete system it is not linear

Exercise:

$$
\begin{array}{r}
V(s)=-L i\left(0^{-}\right)+s L I(s) \\
I(s)=\frac{i\left(0^{-}\right)}{s}+\frac{1}{s L} V(s)
\end{array}
$$

[Hint: It is more convenient to replace the inductor by an inductor and a current source in parallel]

Example 2:

KCL

$$
\begin{array}{ll}
E_{1}: & i_{1}+i_{2}-3=0 \\
E_{2}: & -i_{2}+i_{3}+1=0 \\
E_{3}: & 3-i_{1}-i_{3}-1=0 \tag{3}
\end{array}
$$

Notice that $\sum_{k=1}^{3} E_{k}=0$ So, the equations are linearly dependent i.e. no new information is contained by E_{3}. Hence remove E_{3}

$$
\begin{aligned}
& E_{1}: i_{1}+i_{2}-3=0 \\
& E_{2}:-i_{2}+i_{3}+1=0
\end{aligned}
$$

One can check that E_{2} can not be derived from E_{1}. This is not something specific to this circuit. In any circuit having N nodes there will be only $N-1$ linearly independent equation.

KCL, KVL, branch relation

$$
\begin{aligned}
& E_{1}: i_{1}+i_{2}-3=0 \\
& E_{2}:-i_{2}+i_{3}+1=0
\end{aligned}
$$

w.r.t to the reference node, volatge at node 1 is equal to V_{1}

Consider the following circuit in order to understand that by taking the voltage w.r.t. to reference node will automatically satisfy the KVL

node voltage at node $3=V_{1}+V$.
Now come back to example 2, assign node voltages (Volatge of a node w.r.t. the reference node). KVL will be automatically satisfied.

At node 1

$$
\begin{aligned}
& -3+i_{1}+i_{2}=0 \\
& i_{1}=\frac{V_{1}}{2}, \quad i_{2}=\frac{V_{1}-V_{2}}{5} \\
& \frac{V_{1}}{2}+\frac{V_{1}-V_{2}}{5}=3
\end{aligned}
$$

Similarly,at node 2

$$
\frac{V_{2}-V_{1}}{5}+\frac{V_{2}}{2}=-1
$$

Above two equations can be written in matrix form as follows:

$$
\left[\begin{array}{cc}
1 / 2+1 / 5 & -1 / 5 \\
-1 / 5 & 1 / 2+1 / 5
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1
\end{array}\right]
$$

where

$$
G=\left[\begin{array}{cc}
1 / 2+1 / 5 & -1 / 5 \\
-1 / 5 & 1 / 2+1 / 5
\end{array}\right]
$$

is known as conductance (in general admittance) matrix. Note that the diagonal terms are the sum of the conductances incident at a node and the off-diagonal term is the negative of the conductance between the two nodes. Now solve for node voltages. This method is known as Nodal analysis
Note: Reference node can be any node but it makes sense to take the node with the largest number of branches, as reference node.

Example 3: circuit with dependent current source

$$
\begin{aligned}
& -5+\frac{V_{1}}{2}+\frac{V_{1}-V_{2}}{2}=0 \\
& \frac{V_{2}}{2}+\frac{V_{2}-V_{1}}{2}-2 i_{1}=0
\end{aligned}
$$

and

$$
i_{1}=\frac{V_{1}-V_{2}}{2}
$$

Write it in the matrix form and solve to get $V_{1} \& V_{2}$

Example 4: circuit with voltage source in loop

Assume current through node 1 and 2 is i_{v}

$$
\begin{aligned}
-3+\frac{V_{1}}{2}+i_{v} & =0 \\
1+\frac{V_{2}}{2}-i_{v} & =0
\end{aligned}
$$

Add above equations then we get KCL at super node as

$$
\frac{V_{1}}{2}+\frac{V_{2}}{2}=2
$$

and the equation for the voltage source as

$$
V_{1}-V_{2}=2
$$

Solve for $V_{1} \& V_{2}$
The equations can also be written using modified nodal analysis. Here the unknowns are all the node voltages and currents through voltage sources.

$$
\begin{aligned}
-3+\frac{V_{1}}{2}+i_{v} & =0 \\
1+\frac{V_{2}}{2}-i_{v} & =0 \\
V_{1}-V_{2} & =2
\end{aligned}
$$

In the matrix form, it can be wriiten as

$$
\left[\begin{array}{ccc}
0.5 & 0 & 1 \\
0 & 0.5 & -1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{2} \\
\mathrm{i}_{V}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right]
$$

