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So, the above circuit is linear w.r.t. input and state respectively, But as a complete system
it is not linear

Exercise :
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[Hint: It is more convenient to replace the inductor by an inductor and a current source
in parallel]

Example 2:
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KCL

E1 : i1 + i2 − 3 = 0 (1)
E2 : −i2 + i3 + 1 = 0 (2)
E3 : 3− i1 − i3 − 1 = 0 (3)

Notice that
∑3

k=1Ek = 0 So, the equations are linearly dependent i.e. no new information is
contained by E3. Hence remove E3

E1 : i1 + i2 − 3 = 0
E2 : −i2 + i3 + 1 = 0

One can check that E2 can not be derived from E1. This is not something specific to this cir-
cuit. In any circuit having N nodes there will be only N − 1 linearly independent equation.

N − 1

iR

when KCL is written for these nodes,there will be a node
with ′ + i′R; No equation with ′ − i′R since node R is removed.

R

atleast one branch going from the set of nodes to the node R
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KCL, KVL, branch relation

E1 : i1 + i2 − 3 = 0
E2 : −i2 + i3 + 1 = 0
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Reference node

w.r.t to the reference node , volatge at node 1 is equal to V1

Consider the following circuit in order to understand that by taking the voltage w.r.t. to
reference node will automatically satisfy the KVL
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KVL will give this branch voltage
as a difference of node volatges1

3

2

node voltage at node 3 = V1 +V .

Now come back to example 2, assign node voltages (Volatge of a node w.r.t. the reference
node). KVL will be automatically satisfied.
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At node 1

−3 + i1 + i2 = 0

i1 =
V1

2
, i2 =

V1 −V2

5
V1

2
+
V1 −V2

5
= 3

Similarly,at node 2

V2 −V1

5
+
V2

2
= −1

Above two equations can be written in matrix form as follows:[
1/2 + 1/5 −1/5
−1/5 1/2 + 1/5

][
V1
V2

]
=

[
3
−1

]
where

G =
[
1/2 + 1/5 −1/5
−1/5 1/2 + 1/5

]
is known as conductance (in general admittance) matrix. Note that the diagonal terms are
the sum of the conductances incident at a node and the off-diagonal term is the negative
of the conductance between the two nodes. Now solve for node voltages. This method is
known as Nodal analysis
Note: Reference node can be any node but it makes sense to take the node with the largest
number of branches, as reference node.

Example 3: circuit with dependent current source
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Write it in the matrix form and solve to get V1&V2
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Example 4: circuit with voltage source in loop
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super node
V1 V2

Assume current through node 1 and 2 is iv

−3 +
V1

2
+ iv = 0

1 +
V2

2
− iv = 0

Add above equations then we get KCL at super node as

V1

2
+
V2

2
= 2

and the equation for the voltage source as

V1 −V2 = 2

Solve for V1&V2

The equations can also be written using modified nodal analysis. Here the unknowns
are all the node voltages and currents through voltage sources.

−3 +
V1

2
+ iv = 0

1 +
V2

2
− iv = 0

V1 −V2 = 2

In the matrix form, it can be wriiten as0.5 0 1
0 0.5 −1
1 −1 0


V1
V2
iV

 =

 3
−1
2


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