Lecture 6: Laplace domain analysis

Lecturer: Dr. Vinita Vasudevan
Scribe: RSS Chaithanya

Laplace Transform

KCL: $\sum i_{k}(t)=0$ at any node, at any instant of time.

$$
i_{1}(t)+i_{2}(t)+\ldots+i_{n}(t)=0
$$

Taking Laplace transform (L.T) on both sides

$$
\begin{aligned}
\int_{0^{-}}^{\infty}\left(\sum_{k} i_{k}(t)\right) e^{-s t} \mathrm{~d} t & =0 \\
\Longrightarrow \sum_{k}\left(\int_{0^{-}}^{\infty} i_{k}(t) e^{-s t} \mathrm{~d} t\right) & =0 \\
\Longrightarrow \sum_{k} I_{k}(s) & =0, \quad I_{k}(s): \text { Ampere-sec units }
\end{aligned}
$$

Similarly KVL: $\sum_{k} v_{k}(t)=0 \Longrightarrow \sum_{k} V_{k}(s)=0$, Units: Volt-sec. Consider all circuits to be LTI unless mentioned otherwise.

Resistor

$$
v(t)=\operatorname{Ri}(t)
$$

Taking L.T on both sides

$$
V(s)=R I(s)
$$

Capacitor

$$
i(t)=C \frac{\mathrm{~d} v(t)}{\mathrm{d} t}
$$

Taking L.T on both sides

$$
\begin{aligned}
I(s) & =C \int_{0^{-}}^{\infty} \frac{\mathrm{d} v(t)}{\mathrm{d} t} e^{-s t} \mathrm{~d} t \\
& =C\left(\left.v(t) e^{-s t}\right|_{0^{-}} ^{\infty}+s \int_{0^{-}}^{\infty} v(t) e^{-s t} \mathrm{~d} t\right) \\
& =C\left(-v\left(0^{-}\right)+s V(s)\right)=-\operatorname{Cv}\left(0^{-}\right)+s C V(s)
\end{aligned}
$$

where $v\left(0^{-}\right)$is the initial voltage across the capacitor. $s C$ is called admittance of capacitor.

Circuit representation 1

$$
V(s)=\frac{1}{s C} I(s)+\frac{1}{s} v\left(0^{-}\right)
$$

$\frac{1}{S C}$ is called as impedance of capacitor $=1 /$ admittance. Units of impedance is same as resistance.

Circuit representation 2

Both circuit representation 1 and 2 equivalent. Choose the one which is easy for analysis.

Inductor

$$
v(t)=L \frac{\mathrm{~d} i(t)}{\mathrm{d} t}
$$

taking L.T

$$
\begin{aligned}
V(s) & =-L i\left(0^{-}\right)+s L I(s) \\
I(s) & =\frac{1}{s L} V(s)+\frac{1}{s} i\left(0^{-}\right)
\end{aligned}
$$

Circuit representation 1
Circuit representation 2
$s L$ is called as impedance of inductor.

Time domain

$\xrightarrow[m]{L}$

Laplace domain

Zero initial conditions

Under zero initial conditions

- For a resistor $V(s)=R I(s)$
- For a capacitor $V(s)=(1 / s C) I(s)$
- For an inductor $V(s)=s L I(s)$

Impedance is represented with $Z(s)$ and admittance is represented with $Y(s)=\frac{1}{Z(s)}$. Impedance in Laplace domain behaves exactly like resistance in time domain.

Example 1. Impedance for the following circuit

Example 2. Impedance for the following circuit

$$
Z(s)=R+1 / s C+s L
$$

Example 3. Admittance for the following circuit

$$
Y(s)=s C+1 / s L
$$

Example 4. Admittance for the following circuit

$$
Y(s)=\frac{s C(1 / R+1 / s L)}{s C+1 / R+1 / s L}
$$

Example 5. Calculate $i(t)$ in the following circuit. Zero initial conditions.

$$
\begin{aligned}
V(s) & =L \cdot T(2 \cdot u(t))=2 / s \\
\Longrightarrow 2 / s & =I(s)(s+2) \\
\Longrightarrow I(s) & =\frac{2}{s(s+2)}=\frac{1}{s}-\frac{1}{s+2}
\end{aligned}
$$

$i(t)=L . T^{-1}(I(s))=\left(1-e^{-2 t}\right) u(t)$. As $t \rightarrow \infty, i(t)=1$. At $t=0^{+}, i(t)=0$. For a DC, if the circuit is ON for a long time then the inductor is a short circuit.

Example 6. Calculate $v(t)$ in the following circuit

$$
\begin{aligned}
Y(s) & =1 / 5+s \\
I(s) & =Y(s) \cdot V(s) \\
\Rightarrow V(s) & =\frac{5}{s}\left(\frac{5}{1+5 s}\right)=25\left(\frac{1}{s}-\frac{1}{s+1 / 5}\right)
\end{aligned}
$$

$v(t)=L \cdot T^{-1}(V(s))=25\left(1-e^{-t / 5}\right) u(t)$. As $t \rightarrow \infty, v(t)=25 \mathrm{~V} \Longrightarrow$ Capacitor is an open circuit.
In DC, Inductor is a short circuit and capacitor is an open circuit.

