Lecture 5: Power and Energy (Cont'd...)

Lecturer: Dr. Vinita Vasudevan

Scribe: RSS Chaithanya

Power and Energy

Example 1. Consider the following circuit and calculate the power of each voltage source

20 - 10i - 90 - 40i - 2(10i) = 0i = -1A

 $p_1 = 20W$ (absorbing power), $p_2 = -90W$ (delivering power), $p_3 = 20W$ (absorbing power) Example 2. Consider the following circuit with $k, g_m > 0$

$$V_{s} - I_{s}R_{1} - kV_{2} = 0, \quad g_{m}V_{s}R_{2} = -V_{2}$$
$$V_{s} = I_{s}R_{1} + k(-g_{m}V_{s}R_{2})$$
$$I_{s} = \frac{V_{s}}{R_{1}}(1 + kg_{m}R_{2})$$

 p_1 is -ve, p_2 is -ve, p_3 is -ve. Therefore all the sources (both independent and dependent) in the above circuit deliver power.

Controlled sources can deliver power or absorb power similar to independent sources.

I-V characteristics

Any generic element absorbs power if it is operating in 1^{st} or 3^{rd} quadrant and delivers power if it is operating in 2^{nd} or 4^{th} quadrant. *V* is the voltage drop and the reference direction for *I* is in the direction of the voltage drop.

• Ideal Voltage Source: Ideal voltage source can deliver power or absorb power depending upon which quadrant it is operating in.

• Resistor: Resistor always absorbs power.

• Ideal Current Source: Ideal current source can deliver or absorb power depending on its operating point.

Example 3. Consider the following circuit

In this example 'Load' can operate in three quadrants, capable of both generating and absorbing power.

I-V characteristics can be draw for any part of circuit, considering that part as a generic 'Load' element.

Example 4. Consider the following circuit

Power = $i\frac{di}{dt} = sin(t) \cdot cos(t) = \frac{1}{2}sin(2t)$. In this case, inductor oscillates between absorbing and delivering power at twice the frequency of current source.

Unilateral Laplace transform

Bilateral Laplace transform:
$$F(s) = \int_{-\infty}^{\infty} f(t)e^{-st} dt$$

Unilateral Laplace transform: $F(s) = \int_{-\infty}^{\infty} f(t)u(t)e^{-st} dt = \int_{0^{-}}^{\infty} f(t)e^{-st} dt$

Bilateral Laplace transform of $e^{-at}u(t)$ and $-e^{-at}u(-t)$ are same $(\frac{1}{s+a})$ but with different region of convergences. For $e^{-at}u(t)$ it is s > -a and for $-e^{-at}u(-t)$ it is s < -a. We want the inverse transform to be causal. It is enough to do unilateral Laplace transform (referred as just Laplace transform) since its inverse gives unique causal signal.