Lecture 31: Polyphase Circuits

Polyphase Circuits

$$
\begin{aligned}
v(t) & =V_{m} \cos \left(\omega t+\theta_{v}\right) \\
i(t) & =I_{m} \cos \left(\omega t+\theta_{v}-\alpha\right) \\
& \alpha: \text { impedance angle } \\
p(t) & =v(t) i(t) \\
& =V_{m} I_{m} \cos \left(\omega t+\theta_{v}\right) \cos \left(\omega t+\theta_{v}-\alpha\right) \\
& =\frac{V_{m} I_{m}}{2}\left[\cos \left(2\left(\omega t+\theta_{v}\right)-\alpha\right)+\cos \alpha\right] \\
& =\frac{V_{m} I_{m}}{2}\left[\cos \left(2\left(\omega t+\theta_{v}\right)\right) \cos \alpha+\sin \left(2\left(\omega t+\theta_{v}\right)\right) \sin \alpha+\cos \alpha\right] \\
& =P\left[1+\cos \left(2\left(\omega t+\theta_{v}\right)\right)\right]+Q \sin \left(2\left(\omega t+\theta_{v}\right)\right)
\end{aligned}
$$

where P is active power $=V_{e f f} I_{e f f} \cos \alpha$. Average value of $\mathrm{p}(\mathrm{t}) P$. and Q is reactive power $=V_{e f f} I_{e f f} \sin \alpha$. Active power; average is non-zero,but there is a large variation around the average. Motor speed will vary with time. To make speed more uniform; reduce this variation - have multiple signals that have maximum power at different times.
Bicycles: 2 power strokes per cycle;

- similar principle also used in multi-cylinder engines in cars.

Consider two sources 180° out of phase

$$
\begin{aligned}
& p_{1}(t)=P(1+\cos 2 \omega t)+Q \sin 2 \omega t \\
& p_{2}(t)=P(1+\cos (2 \omega t-\pi))+Q \sin (2 \omega t-\pi) \\
& P=\frac{|V|^{2}}{\left|Z_{L}\right|} \cos \alpha \\
& Q=\frac{|V|^{2}}{\left|Z_{L}\right|} \sin \alpha \\
& p_{1}(t)+p_{2}(t)=2 P \quad \begin{array}{l}
\rightarrow \text { Instantaneous } \\
\text { power is constant }
\end{array}
\end{aligned}
$$

$$
I_{N n}=\frac{V}{Z_{L}}+\frac{V e^{-j \pi / 2}}{Z_{L}} \neq 0
$$

- 2 phase balanced system. If both phase have the same load, the instantaneous power $=$ constant. However, current in the neutral is not zero.

3 Phase Systems

$$
\begin{aligned}
V_{a} & =V \measuredangle 0^{\circ} \\
V_{b} & =V \measuredangle-120^{\circ} \\
V_{c} & =V \measuredangle 120^{\circ}
\end{aligned}
$$

If Z_{L} is the same for all 3 phases, the complex power in each phase can be calculated as follows.

$$
S=P+j Q=\frac{|V|^{2}}{2|Z|}(\cos \alpha+j \sin \alpha)
$$

where, α is the impedance angle

$$
\begin{aligned}
p_{a}(t) & =P(1+\cos 2 \omega t)+Q \sin 2 \omega t \\
p_{b}(t) & =P\left[1+\cos \left(2 \omega t-\frac{4 \pi}{3}\right)\right]+Q \sin \left(2 \omega t-\frac{4 \pi}{3}\right) \\
p_{c}(t) & =P\left[1+\cos \left(2 \omega t+\frac{4 \pi}{3}\right)\right]+Q \sin \left(2 \omega t+\frac{4 \pi}{3}\right) \\
\cos \left(2 \omega t-\frac{4 \pi}{3}\right) & =\cos \left(2 \omega t+\frac{2 \pi}{3}-2 \pi\right) \\
& =\cos \left(2 \omega t+\frac{2 \pi}{3}\right) \\
\cos \left(2 \omega t+\frac{4 \pi}{3}\right) & =\cos \left(2 \omega t-\frac{2 \pi}{3}+2 \pi\right) \\
& =\cos \left(2 \omega t-\frac{2 \pi}{3}\right)
\end{aligned}
$$

$$
\cos 2 \omega t+\cos \left(2 \omega t+\frac{2 \pi}{3}\right)+\cos \left(2 \omega t-\frac{2 \pi}{3}\right)=0
$$

\&

$$
\sin 2 \omega t+\sin \left(2 \omega t+\frac{2 \pi}{3}\right)+\sin \left(2 \omega t-\frac{2 \pi}{3}\right)=0
$$

Total Power $=p_{a}(t)+p_{b}(t)+p_{c}(t)$

$$
=3 P \quad(\text { constant })
$$

$a b c \rightarrow+v e$ sequence
$a c b \rightarrow-v e$ sequence

$$
\begin{aligned}
I_{a A} & =\frac{V}{|Z|} e^{-j \alpha} \\
I_{b B} & =\frac{V}{|Z|} e^{-j(2 \pi / 3+\alpha)} \\
I_{c C} & =\frac{V}{|Z|} e^{j(2 \pi / 3-\alpha)} \\
I_{a A}+I_{b B}+I_{c C} & =\frac{V}{|Z|} e^{-j \alpha}\left(1+e^{-j 2 \pi / 3}+e^{j 2 \pi / 3}\right) \\
& =0
\end{aligned}
$$

$I_{N n}:$ current in neutral $=0$.
For 3 phase system, when we have balanced loads, instantaneous power $=$ constant and current in neutral $=0$. This is what is used in power distribution systems.

