Lecture 27: Sinusoidal Steady State (Contd...)

Example 1 : Superposition

\Rightarrow Superposition can be used to solve for the system response. Especially useful if you have sources with different frequencies.

Here the question is which ω value should we use for impedance of induc-

$$
I_{1}=\frac{A_{1}}{R+j \omega_{1} L}
$$

$I_{2}=\frac{A_{2}}{R+j \omega_{2} L}$

Same frequency :

$$
B_{1} e^{j \omega t}+B_{2} e^{j \omega t}=\left(B_{1}+B_{2}\right) e^{j \omega t}
$$

Adding the two signals is the same as adding the phasors and then multiplying by $e^{j \omega t}$

Different frequency :

$$
B_{1} e^{j \omega_{1} t}+B_{2} e^{j \omega_{2} t} \longrightarrow \text { Cannot add the phasors. }
$$

Add signals in time domain after multiplying by $e^{j \omega t}$
Total response : $\frac{A_{1}}{R+j \omega_{1} L} e^{j \omega_{1} t}+\frac{A_{2}}{R+j \omega_{2} L} e^{j \omega_{2} t}$
Actual response: $\operatorname{Re}\left\{I_{1} e^{j \omega_{1} t}+I_{2} e^{j \omega_{2} t}\right\}$

Periodic signal as Input

$$
\begin{gathered}
I_{k}=\frac{C_{k}}{R+j k \omega_{0} L} \\
I(t)=\sum_{k} \frac{C_{k}}{R+j k \omega_{0} L} e^{j k \omega_{0} t}
\end{gathered}
$$

Example 2 : Find Thevenin's equivalent circuit as seen by inductor. Note : Proof of Thevenin's theorem depends only on substitution and superposition theorem; both of which can be used with phasors.

$V_{A B}=V_{o c}=20 \measuredangle 0-10 \angle 0\left(Z_{\text {eq }}\right)=-180+j 400$

$$
\tan ^{-1}\left(\frac{400}{-180}\right)=-65.77+180
$$

Driving point impedance

Connect $I_{i n} e^{j \omega t}$; response is $V e^{j \omega t}$

$$
V e^{j \omega t}=I_{i n} Z e^{j \omega t}
$$

$Z_{i n}=\frac{V}{I_{i n}}$ where $V, I_{i n}$ are phasors.
Z is complex and $Z=\frac{|V|}{\left|I_{i n}\right|} e^{j\left(\theta_{V}-\theta_{I}\right)}$

Two port networks

For analysis in sinusoidal steady state, use phasors.

V_{1}, I_{1} and I_{2} are phasors.

