Lecture 25: Sinusoidal Steady State

Since power supply is 50 Hz sinusoids, we are interested in steady state voltage/current.

Assume poles of ' N ' are in LHP; no poles in $j \omega$ axis. One way to analyze this is to use Laplace transforms and let $t \rightarrow \infty$.

$$
\begin{aligned}
& V_{\text {out }}(s)=H(s) \frac{s}{s^{2}+\omega_{0}^{2}} \quad\left\{\text { Effectively input is } \cos \omega_{0} t u(t)\right\} \\
& =\frac{A_{1}}{s+\alpha_{1}}+\frac{A_{2}}{s+\alpha_{2}}+\cdots+\frac{B_{1} s+B_{2}}{s^{2}+\omega_{0}^{2}}
\end{aligned}
$$

Steady state solution (forced solution) is due to $\frac{B_{1} s+B_{2}}{s^{2}+\omega_{0}^{2}}$
Find $B_{1} \& B_{2}$; multiply both sides by $s^{2}+\omega_{0}^{2}$ and substitute $s= \pm j \omega_{0}$

$$
\begin{gathered}
H\left(j \omega_{0}\right) \cdot j \omega_{0}=B_{1}\left(j \omega_{0}\right)+B_{2} \\
H\left(-j \omega_{0}\right) \cdot\left(-j \omega_{0}\right)=B_{1}\left(-j \omega_{0}\right)+B_{2} \\
B_{1}=\operatorname{Re}\left\{H\left(j \omega_{0}\right)\right\} \\
B_{2}=-\omega_{0} \operatorname{Im}\left\{H\left(j \omega_{0}\right)\right\} \\
\because \frac{B_{1} s+B_{2}}{s^{2}+\omega_{0}^{2}} \longleftrightarrow \operatorname{Re}\left\{H\left(j \omega_{0}\right)\right\} \cos \omega_{0} t-\operatorname{Im}\left\{H\left(j \omega_{0}\right)\right\} \sin \omega_{0} t \\
=\left|H\left(j \omega_{0}\right)\right| \cos \left(\omega_{0} t+\theta\right)
\end{gathered}
$$

where

$$
\theta=\tan ^{-1}\left[\frac{\operatorname{Im}\left\{H\left(j \omega_{0}\right)\right.}{\operatorname{Re}\left\{H\left(j \omega_{0}\right)\right\}}\right]
$$

The other way to look at is the eigenfunction approach

$$
e^{j \omega t} \rightarrow H(j \omega) e^{j \omega t}
$$

Note that this is a steady state response after all transients have died out. If we find the response to $e^{j \omega t} u(t)$, we will also get the transient response (Not an eigenfunction)

$$
e^{-j \omega t} \rightarrow H(-j \omega) e^{-j \omega t}
$$

Superposition

$$
\cos \omega t \rightarrow \operatorname{Re}\left\{H(j \omega) e^{j \omega t}\right\}
$$

Same as steady state response obtained using Laplace transforms. So to find response to $\cos \omega_{0} t$ all we need is $H\left(j \omega_{0}\right)$

Input is $A e^{j \omega t}$; where, A is complex. Linearity \Rightarrow Output is $A H(j \omega) e^{j \omega t}$ Actual input is $\operatorname{Re}\left\{A e^{j \omega t}\right\}$ where $A=|A| e^{j \theta}$. So actual input is $=|A| \cos (\omega t+\theta)$.

Phasors: The complex coefficient multiplying $e^{j \omega t}$.

$$
\begin{aligned}
e^{j \omega t} & \rightarrow 1 \measuredangle 0 \\
A e^{j \theta} e^{j \omega t} & \rightarrow A \measuredangle \theta
\end{aligned}
$$

To get response to $\sin \omega_{0} t$;

$$
\begin{aligned}
\frac{e^{j \omega t}-e^{-j \omega t}}{2 j} & \rightarrow \frac{H(j \omega) e^{j \omega t}-H(-j \omega) e^{-j \omega t}}{2 j} \\
& =\operatorname{Im}\left\{H(j \omega) e^{j \omega t}\right\} \\
& =\operatorname{Re}\left\{-j H(j \omega) e^{j \omega t}\right\} \\
& =\operatorname{Re}\left\{H(j \omega) e^{-j \pi / 2} e^{j \omega t}\right\} \\
-\sin \omega_{0} t & \rightarrow 1 \measuredangle-\pi / 2
\end{aligned}
$$

All response in a circuit can be written as a (Phasor) $e^{j \omega t}$.
Denote currents as $I e^{j \omega t} ; I$ complex, voltages as $V e^{j \omega t} ; V$ complex
KCL: $\sum_{k} I_{k} e^{j \omega t}=0$ at each node.

$$
\begin{aligned}
e^{j \omega t} & \neq 0 \\
\Rightarrow \sum_{k} I_{k} & =0 \quad \text { \{can be written directly using phasors\} }
\end{aligned}
$$

KVL: $\sum_{k} V_{k}=0$
Branch constitutive relationship Initial conditions are of no consequence as we are looking at steady state solutions after all transients have died out. System is stable; all transients due to initial conditions have also died out.

$$
\begin{gathered}
I=\frac{V_{m}}{R} e^{j \omega t} \\
I=\frac{V_{m}}{R}(\text { Phasor Current })
\end{gathered}
$$

$$
\begin{aligned}
& I=\underbrace{j \omega C V_{m}}_{I_{m}} e^{j \omega t} \\
V_{m} & =\left|V_{m}\right| e^{j \theta} \\
\Rightarrow & I_{m}=\omega C\left|V_{m}\right| e^{j(\theta+\pi / 2)}
\end{aligned}
$$

Current leads voltage by $\pi / 2$

$$
\begin{aligned}
& I=\frac{1}{L} \int V_{m} e^{j \omega t} d t \\
& =\frac{1}{j \omega L} V_{m} \cdot e^{j \omega t} d t \\
& \Rightarrow I_{m}=\frac{\left|V_{m}\right|}{\omega L} e^{-j \pi / 2}
\end{aligned}
$$

Current lags voltage by $\pi / 2$
Impedance : $\frac{V_{m}}{I_{m}}=Z$ Admittance : $\frac{I_{m}}{V_{m}}=Y$ Both Z and Y are complex numbers.

Series and Parallel connections of impedance

Example find steady state response of the following circuit

