Lecture 25: Sinusoidal Steady State

Lecturer: Dr. Vinita Vasudevan

Scribe: Shashank Shekhar

Since power supply is 50 Hz sinusoids, we are interested in steady state voltage/current.

Assume poles of 'N' are in LHP; no poles in $j\omega$ axis. One way to analyze this is to use Laplace transforms and let $t \to \infty$.

Steady state solution (forced solution) is due to $\frac{B_1s + B_2}{s^2 + \omega_0^2}$ Find $B_1 \& B_2$; multiply both sides by $s^2 + \omega_0^2$ and substitute $s = \pm j\omega_0$

$$H(j\omega_{0}) \cdot j\omega_{0} = B_{1}(j\omega_{0}) + B_{2}$$

$$H(-j\omega_{0}) \cdot (-j\omega_{0}) = B_{1}(-j\omega_{0}) + B_{2}$$

$$B_{1} = Re\{H(j\omega_{0})\}$$

$$B_{2} = -\omega_{0}Im\{H(j\omega_{0})\}$$

$$\vdots \frac{B_{1}s + B_{2}}{s^{2} + \omega_{0}^{2}} \longleftrightarrow Re\{H(j\omega_{0})\}\cos\omega_{0}t - Im\{H(j\omega_{0})\}\sin\omega_{0}t$$

$$= |H(j\omega_{0})|\cos(\omega_{0}t + \theta)$$
where

 $\theta = \tan^{-1} \left[\frac{Im\{H(j\omega_0)\}}{Re\{H(j\omega_0)\}} \right]$

The other way to look at is the eigenfunction approach

$$e^{j\omega t} \rightarrow H(j\omega)e^{j\omega t}$$

Note that this is a steady state response after all transients have died out. If we find the response to $e^{j\omega t}u(t)$, we will also get the transient response (Not an eigenfunction)

 $e^{-j\omega t} \rightarrow H(-j\omega) e^{-j\omega t}$

Superposition

$$\cos \omega t \rightarrow Re\{H(j\omega)e^{j\omega t}\}$$

Same as steady state response obtained using Laplace transforms. So to find response to $\cos \omega_0 t$ all we need is $H(j\omega_0)$

Input is $Ae^{j\omega t}$; where, A is complex. Linearity \Rightarrow Output is $AH(j\omega)e^{j\omega t}$ Actual input is $Re\{Ae^{j\omega t}\}$ where $A = |A|e^{j\theta}$. So actual input is $= |A|\cos(\omega t + \theta)$.

Phasors: The complex coefficient multiplying $e^{j\omega t}$.

$$e^{j\omega t} \to 1 \measuredangle 0$$
$$A e^{j\theta} e^{j\omega t} \to A \measuredangle \theta$$

To get response to $\sin \omega_0 t$;

$$\frac{e^{j\omega t} - e^{-j\omega t}}{2j} \rightarrow \frac{H(j\omega)e^{j\omega t} - H(-j\omega)e^{-j\omega t}}{2j}$$
$$= Im\{H(j\omega)e^{j\omega t}\}$$
$$= Re\{-jH(j\omega)e^{j\omega t}\}$$
$$= Re\{H(j\omega)e^{-j\pi/2}e^{j\omega t}\}$$
$$-\sin \omega_0 t \rightarrow 1 \measuredangle - \pi/2$$

All response in a circuit can be written as a (Phasor) $e^{j\omega t}$.

Denote currents as $Ie^{j\omega t}$; *I* complex, voltages as $Ve^{j\omega t}$; *V* complex

KCL: $\sum_{k} I_k e^{j\omega t} = 0$ at each node.

$$e^{j\omega t} \neq 0$$

 $\Rightarrow \sum_{k} I_{k} = 0$ {can be written directly using phasors}

KVL: $\sum_{k} V_k = 0$

Branch constitutive relationship Initial conditions are of no consequence as we are looking at steady state solutions after all transients have died out. System is stable; all transients due to initial conditions have also died out.

Impedance : $\frac{V_m}{I_m} = Z$ Admittance : $\frac{I_m}{V_m} = Y$ Both Z and Y are complex numbers.

Series and Parallel connections of impedance

Example find steady state response of the following circuit

