Lecture 24: Hybrid and Transmission Parameters

Hybrid Parameters - h and g

$$
\begin{aligned}
V_{1} & =h_{11} I_{1}+h_{12} V_{2} \\
I_{2} & =h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\left.h_{11}=\frac{V_{1}}{I_{1}} \right\rvert\, V_{2}=0 & \left.h_{21}=\frac{I_{2}}{I_{1}} \right\rvert\, V_{2}=0 \\
h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0} & \left.h_{22}=\frac{I_{2}}{V_{2}} \right\rvert\, I_{1}=0
\end{array}
$$

To calculate h_{11}, h_{21}

To calculate h_{12}, h_{22}

$$
h_{11}=\frac{1}{Y_{11}}
$$

g Parameter

$$
\begin{gathered}
I_{1}=g_{11} V_{1}+g_{12} I_{2} \\
V_{2}=g_{21} V_{1}+g_{22} I_{2} \\
g_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{I_{2}=0} \quad g_{21}=\left.\frac{V_{2}}{V_{1}}\right|_{I_{2}=0} \\
\left.g_{12}=\left.\frac{I_{1}}{I_{2}}\right|_{V_{1}=0} \quad g_{22}=\frac{V_{2}}{I_{2}} \right\rvert\, V_{1}=0
\end{gathered}
$$

Therefore $H=G^{-1}$.
If we know the h parameters of a two-port network then the network can be represented as follows

Exercise 1: Find h and g parameter.

Exercise 2: Verify G $=H^{-1}$
Example 1: Apply Tellegen's theorem and find out what will be relation between h_{12} and h_{21} of a reciprocal network.

$$
\left(\hat{V}_{1}(s) I_{1}(s)-V_{1}(s) \hat{I}_{1}(s)\right)+\left(\hat{V}_{2}(s) I_{2}(s)-v_{2}(s) \hat{I}_{2}(s)\right)=0
$$

$$
\begin{aligned}
& \text { As } \\
& \qquad \hat{V}_{2}=0, I_{1}=0 \\
& V_{1}(s) \hat{I}_{1}(s)+V_{2}(s) \hat{I}_{2}(s)=0
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& \frac{\hat{I}_{2}}{\hat{I}_{1}}=-\frac{V_{1}}{V_{2}} \\
& h_{21}(s)=-h_{12}(s)
\end{aligned}
$$

Similarly, we can also show that $g_{12}(s)=-g_{21}(s)$. Transmission Parameter

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right]
$$

$$
\begin{array}{cc}
\left.A=\frac{V_{1}}{V_{2}} \right\rvert\, I_{2}=0 & \left.C=\frac{I_{1}}{V_{2}} \right\rvert\, I_{2}=0 \\
\left.B=\frac{V_{1}}{-I_{2}} \right\rvert\, V_{2}=0 & \left.D=\frac{I_{1}}{-I_{2}} \right\rvert\, V_{2}=0
\end{array}
$$

In order to calculate A, we need $I_{2}=0$ so we cannot do the following

But we can use the following

$$
A=\frac{1}{\left.\left(V_{2} / V_{1}\right)\right|_{I_{2}=0}}
$$

Exercise 3 : Find Transmission Parameters for the following networks N_{1} :

$$
T_{1}=\left[\begin{array}{cc}
1 & \mathrm{sL} \\
0 & 1
\end{array}\right]
$$

Cascade of two networks

Note that $V_{3}=V_{2}$ and $I_{3}=-I_{2}$. Therefore,

$$
\begin{aligned}
{\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right] } & =\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\left[\begin{array}{c}
V_{3} \\
I_{3}
\end{array}\right]
\end{aligned}
$$

Also

$$
\left[\begin{array}{l}
V_{3} \\
I_{3}
\end{array}\right]=\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]\left[\begin{array}{c}
V_{4} \\
-I_{4}
\end{array}\right]
$$

Hence,

$$
\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]\left[\begin{array}{c}
V_{4} \\
-I_{4}
\end{array}\right]
$$

The T parameters of cascaded networks can be obtained by multiplying the T-matrices of the individual networks. Use this and the results of the previous exercise to find the T parameters of the following network.

