Lecture 21: Z Parameter

Z Parameters:

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]
$$

If we know the Y parameter of a network then we represent the network as a π or Δ network.Similarly using Z parameter we can represent the network as a T network. Find Z_{1}, Z_{2} and Z_{3} so that the two networks have the same characteristics at the two ports i.e if we connect current sources I_{1} and I_{2} at the ports, the corresponding voltages should be identical.

Port 1

$$
\begin{aligned}
N_{1}: V_{1} & =Z_{11} I_{1}+Z_{12} I_{2} \\
N_{2}: V_{1}^{\prime} & =Z_{1} I_{1}+Z_{2}\left(I_{1}+I_{2}\right) \\
& =\left(Z_{1}+Z_{2}\right) I_{1}+Z_{2} I_{2}
\end{aligned}
$$

$$
V_{1}=V_{1}^{\prime} \Longrightarrow
$$

$$
Z_{2}=Z_{12}
$$

$$
Z_{1}=Z_{11}-Z_{12}
$$

Port 2

$$
\begin{aligned}
N_{1}: V_{2} & =Z_{21} I_{1}+Z_{22} I_{2} \\
N_{2}: V_{2}^{\prime} & =Z_{3} I_{2}+Z_{2}\left(I_{1}+I_{2}\right)+\left(Z_{21}-Z_{12}\right) I_{1} \\
& =Z_{12} I_{1}+\left(Z_{3}+Z_{12}\right) I_{2}+\left(Z_{21}-Z_{12}\right) I_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } \\
& Z_{3}=Z_{22}-Z_{12}
\end{aligned}
$$

The above circuit is the equivalent T network for network N_{1}.
Example 1 : Find Z parameter of the below network

As we know that

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1}+Z_{12} I_{2} \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{2}
\end{aligned}
$$

After solving we will get

$$
\begin{array}{ll}
Z_{11}=\frac{Z_{A}\left(Z_{B}+Z_{C}\right)}{Z_{A}+Z_{B}+Z_{C}} & Z_{21}=\frac{Z_{A} Z_{C}}{Z_{A}+Z_{B}+Z_{C}} \\
Z_{12}=\frac{Z_{A} Z_{C}}{Z_{A}+Z_{B}+Z_{C}} & Z_{22}=\frac{Z_{C}\left(Z_{A}+Z_{B}\right)}{Z_{A}+Z_{B}+Z_{C}}
\end{array}
$$

This can be converted to an equivalent T network. We get

$$
\begin{aligned}
Z_{1} & =\frac{Z_{A} Z_{B}}{Z_{A}+Z_{B}+Z_{C}} \\
Z_{2} & =\frac{Z_{A} Z_{C}}{Z_{A}+Z_{B}+Z_{C}} \\
Z_{3} & =\frac{Z_{C} Z_{B}}{Z_{A}+Z_{B}+Z_{C}}
\end{aligned}
$$

Note that the network is reciprocal and $Z_{12}=Z_{21}$.
Exercise 1 : Find the equivalent $R_{i n}$ using $\Delta-T$ conversion.

Example 2 : Find Thevenin's equivalent looking at port 2. The Z parameters of N_{o} are known.

To find $V_{o c}$: Solve V_{2} when $I_{2}=0$

$$
\begin{aligned}
& V_{1}=V_{s}-I_{1} Z_{s}=Z_{11} I_{1} \\
& V_{2}=Z_{21} I_{1}
\end{aligned}
$$

hence

$$
V_{o c}=V_{2}=\frac{Z_{21} V_{s}}{Z_{11}+Z_{s}}
$$

To find $Z_{t h}$: Connect a current source $I_{\text {test }}$ at port 2 and evaluate $\frac{V_{2}}{I_{\text {test }}}$

$$
\begin{aligned}
& 0=\left(Z_{11}+Z_{s}\right) I_{1}+Z_{12}\left(I_{\text {test }}\right) \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{\text {test }} \\
& Z_{\text {th }}=\frac{V_{2}}{I_{\text {test }}}=Z_{22}-\frac{Z_{21} Z_{12}}{Z_{11}+Z_{s}}
\end{aligned}
$$

Exercise 2: Given $Z=\left[\begin{array}{cc}\frac{2}{s+1} & \frac{1}{s+1} \\ \frac{1}{s+1} & \frac{6}{s+1}\end{array}\right]$ and circuit as given below,

Find zero input and zero state response, output $=V_{2}$ and $V_{i n}=u(t)$
\because Network is relaxed (i.e. N can not have initial condition/sources) So, zero input response (i.e. $V_{i n}=0$) will be $=0$

For Zero State response: Solve following equations

$$
\begin{array}{r}
V_{1}=V_{i n}-I_{1} R_{s}=Z_{11} I_{1}+Z_{12} I_{2} \\
V_{2}=-I_{2} R_{L}=Z_{21} I_{1}+Z_{22} I_{2}
\end{array}
$$

