Lecture 1: Review of Linear System

Lecturer: Dr. Vinita Vasudevan

Scribe: Shashank Shekhar

We will begin with a brief review of linear systems.

Linearity: A system is said to be linear if it follows the property of additivity *i.e.*

$$\begin{aligned} x_1(t) &\mapsto y_1(t) \\ x_2(t) &\mapsto y_2(t) \\ x_1(t) + x_2(t) &\mapsto y_1(t) + y_2(t) \end{aligned}$$

and homogeneity *i.e.*

```
\begin{array}{c} x(t) \mapsto y(t) \\ \alpha x(t) \mapsto \alpha y(t) \end{array}
```

where α is a scalar. Linearity ensures the existence of "impulse response" h(t).

Time Variance/ Time Invariance: A system is said to be time invariant if a "particular" delay/advance in input results in same delay/advance in output *i.e.*

$$x(t) \mapsto y(t)$$
$$x(t-\tau) \mapsto y(t-\tau)$$

By the virtue of time invariance of a system, it does not matter "at point of time" h(t) is computed. Also, Let H: system operator such that y = Hx and Δ_{τ} : Delay operator then for time invariant system these two operator are commutative *i.e.*

 $H \triangle_{\tau} = \triangle_{\tau} H$

Causality: A linear time invariant system is said to be causal if

$$h(t) = 0 \quad \forall t < 0$$

In this course, Linear time invariant causal(LTIC) will be our prime focus.

Frequency domain representation of signal:

If x(t) is periodic signal then we use Fourier series representation.

$$x(t) = \sum_{-\infty}^{\infty} C_k e^{jk\omega_0 t}$$

If x(t) is aperiodic signal then we use Fourier transform.

$$x(t) \longleftrightarrow X(j\omega)$$

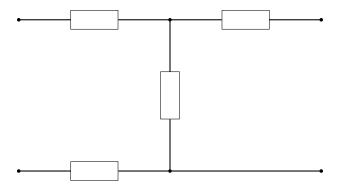
Fourier transform of the output of LTI system can be given as

$$Y(j\omega) = H(j\omega)X(j\omega)$$

where $H(j\omega)$ is fourier transform of h(t). $e^{jk\omega t}$ is an eigen function for linear systems therefore the response at ω depends only on the component of the transfer function and the input at ω .

Also, We will be using Unilateral laplace transform because the systems of interest are causal.

System: it's a interconnection of various component.



In above picture "rectangles" represents the components and the "solid lines" represents the connecting wires. In order to analyse the system, we need I-V characteristics of all components. As our aim is to find out the response (voltage across the component or current through the component) using the component models for a given excitation.

Transient Analysis: It is time domain response like impluse response h(t), step response g(t). It can be done using differential equation or by converting the differential equation in algebric equation by using laplace transform.

Steady State Analysis: It is the response of the system corresponding to single frequency input($e^{jk\omega t}$).

Other than this, we can also calculate power and energy consumption for each component also.