Lecture 19:Two port networks

Lecturer: Dr. Vinita Vasudevan

Single port two terminal network: Can connect a current source and measure voltage (find driving point impedance) or can connect a voltage source and find the current (driving point admittance). The admittance and impedances are reciprocals of each other.

Two port four terminal network - two sets of currents and voltages. We can choose any two quantities as inputs and two as outputs, so there are six possibilities.
$V_{1}, V_{2}, I_{1}, I_{2}$ are the voltages and currents. By convention, current going into the network is taken as positive.

First we choose V_{1}, V_{2} as inputs and I_{1}, I_{2} as outputs and set $\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right]\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]$ Measure the Y parameters as follows.

$$
\begin{aligned}
& y_{11}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{2}=0} \\
& y_{21}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{2}=0}
\end{aligned}
$$

y_{11}, y_{21} are calculated by setting $V_{2}=0$ i.e shorting the output port, adding voltage source at the input port and finding I_{1}, I_{2}.

y_{12}, y_{22} are calculated by setting $V_{1}=0$ i.e shorting the input port, adding voltage source at the output port and finding I_{1}, I_{2}.

$$
\begin{aligned}
& y_{12}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{1}=0} \\
& y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0}
\end{aligned}
$$

so, the equations are

$$
\begin{aligned}
I_{1} & =y_{11} V_{1}+y_{12} V_{2} \\
I_{2} & =y_{21} V_{1}+y_{22} V_{2} \\
{\left[\begin{array}{r}
I_{1} \\
I_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
\end{aligned}
$$

The equivalent circuit corresponding to these equations are

Example: Find Y parameter of the network given below

5Ω and 10Ω are in parallel

$$
\begin{aligned}
I_{1} & =\frac{V_{1}}{5}+\frac{V_{1}}{10} \\
I_{2} & =\frac{-V_{1}}{10} \\
y_{11} & =\frac{1}{5}+\frac{1}{10}=\frac{3}{10} S \\
y_{21} & =\frac{-1}{10} S
\end{aligned}
$$

$$
\begin{aligned}
I_{1} & =\frac{-V_{2}}{10} \\
\Longrightarrow y_{12} & =\frac{-1}{10} S \\
I_{2} & =\frac{V_{2}}{20}+\frac{V_{2}}{10} \\
\Longrightarrow y_{22} & =\frac{3}{20} S
\end{aligned}
$$

Example 2: Find Y parameters of the network

$$
\begin{aligned}
& y_{11}=s+\frac{11}{5} \\
& y_{21}=-(s+0.4)=y_{12} \\
& y_{22}=s+\frac{9}{5}
\end{aligned}
$$

Question:
If a load y_{L} (Admittance) is connected to output port of 2 port network as shown below, then determine the driving point admittance seen at the input port.

solution:
The admittance at the input port is $\frac{I_{1}}{V_{1}}$

$$
\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
$$

Applying ohm's law at output port we get:

$$
I_{2}=-y_{L} V_{2}
$$

using the above equations we can get the following matrix:

$$
\begin{aligned}
& {\left[\begin{array}{c}
I_{1} \\
0
\end{array}\right]=\left[\begin{array}{cc}
y_{11} & y_{12} \\
y_{21} & y_{22}+y_{L}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]} \\
& \Longrightarrow 0=y_{21} V_{1}+\left(y_{22}+y_{L}\right) V_{2} \\
& \Longrightarrow V_{2}=\frac{-y_{21}}{y_{22}+y_{L}} V_{1}
\end{aligned}
$$

Since

$$
I_{1}=y_{11} V_{1}+y_{12} V_{2}
$$

Substitute V_{2} value in above equation to get

$$
\begin{aligned}
I_{1} & =\left(y_{11}-\frac{y_{21} y_{12}}{y_{L}+y_{22}}\right) V_{1} \\
\Longrightarrow y_{i n}=\frac{I_{1}}{V_{1}} & =y_{11}-\frac{y_{21} y_{12}}{y_{L}+y_{22}}
\end{aligned}
$$

The network N can be represented as a circuit with admittances and controlled sources, as shown below.

Gain is defined as the ratio between output voltage and input voltage. Here output voltage is voltage across load, i.e voltage at output port.

$$
\begin{aligned}
\operatorname{gain} & =\frac{V_{2}}{V_{1}} \\
& =\frac{-y_{21}}{y_{22}+y_{L}}
\end{aligned}
$$

Lecture 20:Two port network (Contd...)

Lecturer: Dr. Vinita Vasudevan

$$
\begin{aligned}
\text { gain } & =\frac{V_{2}}{V_{i n}} \\
& =\frac{V_{2}}{V_{1}} \frac{V_{1}}{V_{i n}} \\
& =\frac{-y_{21}}{y_{22}+y_{L}} \frac{y_{s}}{y_{s}+y_{i n}}
\end{aligned}
$$

If we have cascaded networks, $y_{i n_{2}}$ will be the load admittance for N_{1}.
HW: Find the overall gain of the cascaded networks.
Another equivalent circuit:

$$
\begin{aligned}
& I_{1}=y_{11} V_{1}+y_{12} V_{2} \\
& I_{2}=y_{21} V_{1}+y_{22} V_{2}
\end{aligned}
$$

the above two equations can be rewritten as

$$
\begin{aligned}
& I_{1}=\left(y_{11}+y_{12}\right) V_{1}+\left(-y_{12}\right)\left(V_{1}-V_{2}\right) \\
& I_{2}=\left(y_{21}-y_{12}\right) V_{1}+\left(y_{22}+y_{12}\right) V_{2}+\left(-y_{12}\right)\left(V_{2}-V_{1}\right)
\end{aligned}
$$

These equations can be represented in a circuit form as follows.

Find the y parameters and represent the following circuit in this equivalent form.

$$
\begin{aligned}
y_{11} & =\frac{\left(\frac{1}{Z_{A}}\right)\left(\frac{1}{Z_{B}}+\frac{1}{Z_{C}}\right)}{\frac{1}{Z_{A}}+\frac{1}{Z_{B}}+\frac{1}{Z_{C}}} \\
& =\frac{Z_{B} Z_{C}}{Z_{A} Z_{B}+Z_{B} Z_{C}+Z_{C} Z_{A}} \\
\Longrightarrow V_{X} & =\frac{V_{1}\left(\frac{Z_{B} Z_{C}}{Z_{B}+Z_{C}}\right)}{Z_{A}+\frac{Z_{B} Z_{C}}{Z_{B}+Z_{C}}} \\
I_{2} & =\frac{-V_{X}}{Z_{C}} \\
y_{21} & =\frac{-Z_{B}}{Z_{A} Z_{B}+Z_{B} Z_{C}+Z_{C} Z_{A}}=y_{12} \\
y_{22} & =\frac{Z_{A}+Z_{B}}{Z_{A} Z_{B}+Z_{B} Z_{C}+Z_{C} Z_{A}} \\
\text { Let } D & =Z_{A} Z_{B}+Z_{B} Z_{C}+Z_{C} Z_{A}
\end{aligned}
$$

This is called Y- Δ transformation or π-T transformation. Networks for which $y_{12}=y_{21}$ are called reciprocal networks.

This transformation can be used to simplify analysis of circuits as shown in the following example.

Reciprocal network:

If $y_{12}=y_{21} ; i_{1}=i_{2}$. Can interchange the position of the voltage source and the point at which current is measured.

Home work:

Find Y parameters of above circuit.
Impedance parameters
2 port equations are:

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+z_{12} I_{2} \\
& V_{2}=z_{21} I_{1}+z_{22} I_{2}
\end{aligned}
$$

$$
z_{11}=\left.\frac{v_{1}}{I_{1}}\right|_{I_{2}=0}
$$

$$
z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0}
$$

$$
\begin{aligned}
z_{12} & =\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0} \\
z_{22} & =\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0}
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]} \\
V=Z I
\end{gathered}
$$

Since

$$
\begin{aligned}
& I=Y V \\
& Z=Y^{-1} \\
& \Longrightarrow z_{11} \neq \frac{1}{y_{11}} \\
& z_{11}=\frac{y_{22}}{y_{11} y_{22}-y_{12} y_{21}}
\end{aligned}
$$

Easy to find Z parameters of a T-network.

$$
\begin{aligned}
& z_{11}=z_{A}+z_{B} \\
& z_{21}=z_{B}=z_{12} \\
& z_{22}=z_{B}+z_{C}
\end{aligned}
$$

Homework:
Find z parameters of a π network and transform to a T-network.

$$
Z=\left[\begin{array}{ll}
R & R \\
R & R
\end{array}\right]
$$

The equivalent circuit for the Z parameters is as follows.

