## Lecture 17: Thevenin/Nortan Equivalent Circuit

Example 1 : Replace the dashed part of given circuit by single voltage source in series with a resistance


As far as $R_{L}$ is concerned there is no difference between this network and the original network. This is true for any value of $R_{L}, V_{i n}, I_{i n}$.
This resultant circuit is known as "Thevenin equivalent"
Similarly


Now the question arises that "What if we can not do source transformation ?" Since the network will be equivalent for any value of $R_{L}$; in particular for $R_{L}=0, R_{L}=\infty$


$$
I_{s c}=\frac{2 I_{i n}+V_{i n}}{5}
$$

$$
V_{o c}=2 I_{i n}+V_{i n}
$$

Now $R_{t h}$ can be calculated as $\Rightarrow R_{t h}=\frac{V_{o c}}{I_{s c}}$


So instead of doing source transformation, we can find open circuit voltage and short circuit current

Another way to find the Thevenin equivalent is, first find $V_{o c}$ and then use the fact that circuits are equivalent for any $V_{i n}$ and $I_{i n}$; in particular for $V_{i n}=0, I_{i n}=0$


We can find $R_{t h}$ by setting all independent sources and initial conditions to zero and finding equivalent resistance (impedence)

## Three methods to find Thevenin's Equivalent

1. Source transformations
2. Find $V_{o c}, I_{s c} ; V_{t h}=V_{o c}, Z_{t h}=V_{o c} / I_{s c}$
3. Find $V_{o c}$; set all independent, initial conditions to zero and find $Z_{t h}$

## Example 2 : Find thevenin equivalent



Clearly $V_{o c}=V_{x}=8 V$. For calculating $R_{t h}$ we will first calculate the $I_{s c}$. as we short the terminal i.e. $V_{x}=0 \Rightarrow$ dependent current source $=0$

hence the thevenin equivalent will be as follows:


Example 3 : Find thevenin equivalent between terminal a-b



$$
V_{o c}=\frac{45}{135}
$$



$$
R_{e q}=\frac{7}{13} \Omega
$$

hence the thevenin equivalent between terminal a-b will be as follows:


## Exercise : Find thevenin equivalent between terminal a-b



Hint: Do repeated source transformation and make it one mesh.

