Lecture 16: Nodal/Mesh Analysis, Source Transformation

Nodal Analysis

$$
[G] \underbrace{[V]}_{\substack{\text { Unknown } \\
\text { Variables }}}=\underbrace{\left[I_{s}\right]}_{\begin{array}{c}
\text { independent sources/ } \\
\text { initial conditions }
\end{array}}
$$

Mesh Analysis

$$
[Z] \underbrace{[I]}_{\substack{\text { Unknown } \\
\text { Variables }}}=\underbrace{\left[V_{s}\right]}_{\begin{array}{c}
\text { independent sources/ } \\
\text { initial conditions }
\end{array}}
$$

Example 1: Write the nodal equations for following circuit

As $V_{3}=V_{s}$ so effectively we have only two unknown V_{1}, V_{2}. By applying KCL we will get following matrix equation:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\frac{1}{2} & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right] }=\left[\begin{array}{c}
I_{s}+V_{s} / 2 \\
0
\end{array}\right] \\
&=\left[\begin{array}{c}
I_{s} \\
0
\end{array}\right]+\left[\begin{array}{c}
V_{s} / 2 \\
0
\end{array}\right] \\
& {\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\underbrace{G^{-1}\left[\begin{array}{c}
I_{s} \\
0
\end{array}\right]}_{S_{1}}+\underbrace{G^{-1}\left[\begin{array}{c}
V_{s} / 2 \\
0
\end{array}\right]}_{S_{2}} }
\end{aligned}
$$

Observation: Note that S_{1} can be obtained by setting $V_{s}=0$, Circuit for that will be as follows:

S_{2} can be obtained by setting $I_{s}=0$, Circuit for that will be as follows:

and the total solution is sum of the two solutions. This is expected to be happen as the system is linear w.r.t. each source, so Superposition should be applicable.

Example 2: Write the nodal equations for following circuit

$$
\begin{aligned}
{\left[\begin{array}{cc}
s+2 & -1 \\
-1 & 1 / s+1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right] } & =\left[\begin{array}{c}
I_{i n}(s)+V_{c}\left(0^{-}\right) \\
-\frac{i_{L}\left(0^{-}\right)}{s}
\end{array}\right] \\
& =\left[\begin{array}{c}
{\left[\begin{array}{c}
I_{i n}(s) \\
0
\end{array}\right]+\left[\begin{array}{c}
V_{c}\left(0^{-}\right) \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
i_{L}\left(0^{-}\right) \\
s
\end{array}\right]}
\end{array}\right.
\end{aligned}
$$

zero-input can apply one initial condition at a time

Example 3: Solve the following circuit using Superposition

Note: Superposition can be appiled only for independent sources and sources appearing because of initial conditions

Setting the voltage source equal to zero \Leftrightarrow short the terminal
Setting the current source equal to zero \Leftrightarrow opencircuit the terminal

Source Transformation

Hence we can replace voltage source with resistance in series by a current source with resistance in parallel.

Example 4: Replace current source with resistance in parallel by voltage source with resistance in series.

Since the following two circuits are equivalent

So the given circuit can be replaced by following:

Note : Source transformation can be used for independent, dependent sources and also for initial conditions, as the I-V relationship is the same in all conditions

Exercise 1 : Apply the series of source transformations to get circuit with single mesh

Exercise 2: Replace the dashed part of given circuit by single voltage source in series with a inpedence

