Lecture 14: Bode plots

Lecturer: Dr. Vinita Vasudevan
Loop of voltage sources and capacitor ; $V_{c}\left(0^{+}\right) \neq V_{c}\left(0^{-}\right)$

To satisfy KVL,there must be a step change in capacitor voltage. Use charge balance to find $V_{c}\left(0^{+}\right)$.

Nodes/Super Nodes with only inductors and current sources.

Assuming we To satisfy KCL, must have step changes in the inuctor current Normally $i_{l}\left(0^{+}\right)=i_{l}\left(0^{-}\right)$, except under these conditions. At $\mathrm{t}=0 V=K \delta(t)$, which is equal to the voltage across the inductors. This creates a flux in both inductors, which must therefore be equal. Hence,

$$
\begin{aligned}
L_{1} i_{1}\left(0^{+}\right) & =L_{2} i_{2}\left(0^{+}\right) \\
i_{1}\left(0^{+}\right)+i_{2}\left(0^{+}\right) & =1
\end{aligned}
$$

Solve these two equations to get i_{1} and i_{2} at $\left(0^{+}\right)$

$$
\begin{aligned}
V & =L \frac{d i}{d t} \\
K \delta(t) & =\frac{d \phi}{d t}
\end{aligned}
$$

Therefore, $\phi\left(0^{+}\right)-\phi\left(0^{-}\right)=K$ Since $\phi_{1}\left(0^{-}\right)=\phi_{2}\left(0^{-}\right)=0, \phi_{1}\left(0^{+}\right)=\phi_{2}\left(0^{+}\right)=K$. Hence $L_{1} i_{1}\left(0^{+}\right)=L_{2} i_{2}\left(0^{+}\right)$. Substitute in KCL and find $i_{1}\left(0^{+}\right)$and $i_{2}\left(0^{+}\right)$.

1 Bode Plots

Piecewise linear approximations

$$
\begin{aligned}
H(s) & =\left(1+\frac{s}{a}\right) \\
H(j \omega) & =1+\frac{j \omega}{a} \\
|H(j \omega)| & =\sqrt[2]{1+\frac{\omega^{2}}{a^{2}}} \\
\angle H(j \omega) & =\tan ^{-1}\left(\frac{\omega}{a}\right) \\
H_{d B} & =20 \log _{10}|H(j \omega)| \\
& =20 \log _{10} \sqrt[2]{1+\frac{\omega^{2}}{a^{2}}} \\
& =10 \log _{10} 1+\frac{\omega^{2}}{a^{2}}
\end{aligned}
$$

Let's look at two cases:

$$
\begin{aligned}
& \omega \ll a \Longrightarrow H_{d B}=10 \log _{10} 1=0 \\
& \omega \gg a \Longrightarrow H_{d B}=20 \log _{10} \frac{\omega}{a}
\end{aligned}
$$

Figure 1: considering $\mathrm{a}=1$

Figure 2: considering $\mathrm{a}=1$

Example 2:

$$
\begin{aligned}
H(s) & =\left(1+\frac{s}{20}\right)\left(1+\frac{s}{1000}\right) \\
|H(j \omega)| & =\left|1+\frac{j \omega}{20}\right|\left|1+\frac{j \omega}{1000}\right| \\
& =\sqrt[2]{1+\frac{\omega^{2}}{20^{2}}} \sqrt[2]{1+\frac{\omega^{2}}{1000^{2}}} \\
H_{d B} & =20 \log _{10} \sqrt[2]{1+\frac{\omega^{2}}{20^{2}}}+20 \log _{10} \sqrt[2]{1+\frac{\omega^{2}}{1000^{2}}} \\
\omega \ll 20 \Longrightarrow H_{d B} & =20 \log _{10} 1+20 \log _{10} 1=0 \\
20<\omega \ll 1000 \Longrightarrow H_{d B} & =20 \log _{10} \frac{w}{20}+20 \log _{10} 1 \\
\omega \gg 1000 & \Longrightarrow H_{d B}
\end{aligned}=20 \log _{10} \frac{\omega}{20}+20 \log _{10} \frac{\omega}{1000}
$$

The asymptote is initially zero, then rises as 20 dB /decade and finally at 40 dB /decade.

Figure 3: Magnitude plot

$$
\angle H(j \omega)=\tan ^{-1}\left(\frac{\omega}{20}\right)+\tan ^{-1}\left(\frac{\omega}{1000}\right)
$$

Figure 4: Phase plot

$$
\angle H(j \omega)=\tan ^{-1}\left(\frac{\omega}{10}\right)-\tan ^{-1}\left(\frac{\omega}{200}\right)-\tan ^{-1}\left(\frac{\omega}{10^{5}}\right)
$$

From $\omega=2$ to $\omega=100$, it rises as $45^{\circ} /$ decade, from $\omega=100$ to $\omega=200$, it rises as $90^{\circ} /$ decade, from $\omega=200$ to $\omega=10000$, it rises as $45^{\circ} /$ decade. Beyond $\omega=10000$, it is constant at 180°.

Example 3:

$$
\begin{aligned}
H(s) & =\frac{s+10}{(s+200)\left(s+10^{5}\right)} \\
|H(j \omega)| & =\frac{\left|1+\frac{j \omega}{10}\right|}{\left(\left|1+\frac{j \omega}{200}\right|\right)\left(\left|1+\frac{j \omega}{10^{5}}\right|\right)} \\
H_{d B} & =20 \log _{10} k+20 \log _{10} \sqrt[2]{1+\frac{\omega^{2}}{10^{2}}}-20 \log _{10} \sqrt[2]{1+\frac{\omega^{2}}{200^{2}}}-20 \log _{10} \sqrt[2]{1+\frac{\omega^{2}}{10^{10}}}
\end{aligned}
$$

$$
\begin{aligned}
& H_{1}=20 \log _{10} k(\text { constant independent of } \omega) \\
& H_{2}=20 \log _{10} \sqrt[2]{1+\frac{\omega^{2}}{10^{2}}}(\text { rises as } 20 \mathrm{db} / \text { decade when } \omega=10) \\
& H_{3}=-20 \log _{10} \sqrt[2]{1+\frac{\omega^{2}}{200^{2}}}(\text { falls by } 20 \mathrm{db} / \text { decade when } \omega=100) \\
& H_{4}=-20 \log _{10} \sqrt[2]{1+\frac{\omega^{2}}{10^{10}}}(\text { falls by } 20 \mathrm{db} / \text { decade at } \omega=100000)
\end{aligned}
$$

Figure 5: considering $\mathrm{a}=1$

Figure 6: Phase plot

