Lecture 13: Natural Frequency and Bode Plot

Lecturer: Dr. Vinita Vasudevan

Scribe: Shashank Shekhar

Natural Frequencies

- * No. of natural frequencies = # of independent initial conditions that can be assigned ≡ order of the circuit.
- * can be obtained by solving for roots of the polynomial obtained by determinant of the node/mesh based network matrix.
- * *n* natural frequencies $k_1 e^{s_1 t} + k_2 e^{s_2 t} + \dots + k_n e^{s_n t}$ but it may happen that a frequency have multiplicity more than one.

e.g.
$$\frac{1}{(s+a)^2} \to kte^{-at}$$

* System is stable, poles in LHP/simple poles in $j\omega$ axis; transient will die out or you get solution of form $cos\omega_0 t$, $sin\omega_0 t$, u(t)

Exercise - Find the natural frequencies of the following circuits

Hint: There could be additional poles at zero.

Laplace/Time domain analysis with loops of voltage sources and capacitors **Example 1 :** Assume capacitors are initially uncharged.

To satisfy KVL, capacitors voltages must also be of the form $Ku(t) \Rightarrow$ Impulsive current that charge both the capacitors.

In the Laplace domain,

$$I(s)\left(\frac{1}{sC_1} + \frac{1}{sC_2}\right) = \frac{1}{s}$$
$$I(s) = \frac{C_1C_2}{C_1 + C_2} \leftrightarrow i(t) = \frac{C_1C_2}{C_1 + C_2}\delta(t)$$

$$V_{C_{1}}(s) = \frac{1}{sC_{1}} \frac{C_{1}C_{2}}{C_{1}+C_{2}} = \frac{1}{s} \frac{C_{2}}{C_{1}+C_{2}}$$
$$v_{C_{1}}(t) = \frac{C_{2}}{C_{1}+C_{2}} u(t)$$
$$v_{C_{2}}(t) = \frac{C_{1}}{C_{1}+C_{2}} u(t)$$

We can also solve this problem in the time domain using capacitor charge equation

Switch capacitor circuits

Assume initial voltage across C_1 is V_{C_1} and C_2 is initially uncharged. Final voltage is V_f .

when switch is closed the charge in
$$C_1$$
 will be redistributed so
that final voltage is the same.
Initial voltage across C_1 is $V_{C_1}(0)$

$$Q = C_1 V_{C_1}(0) = V_f (C_1 + C_2)$$

Bode Plots

* circuits is stable ($j\omega$ axis is in the ROC)

 \Rightarrow Given H(s), can find $H(j\omega)$ Plot response to $e^{j\omega t}$ (Eigenfunction). Plot magnitude and phase response.

$$e^{j\omega t} \to \underbrace{H(j\omega)}_{|H(j\omega)| \& \measuredangle H(j\omega)} e^{j\omega t}$$

Example 1: H(s) = 1 + s/a

$$H(j\omega) = 1 + j\omega/a$$

$$|H(j\omega)| = \sqrt{1 + \frac{w^2}{a^2}}, \quad \measuredangle H(j\omega) = \arctan(\omega/a)$$

$$H_{dB} = 20\log_{10}|H(j\omega)| \quad decibel$$

$$= 10\log_{10}|H(j\omega)|^2$$

$$|H(j\omega_2)| = 10|H(j\omega_1)|$$

$$H_{1_{dB}} - H_{2_{dB}} = 20 \log_{10} \frac{|H(j\omega_2)|}{|H(j\omega_1)|}$$

= 20*dB*

$$\angle H(j\omega) = \arctan(\omega/a)$$

$$\omega \ll a \quad \rightarrow \quad \angle H(j\omega) \approx 0$$

$$\omega = a \quad \rightarrow \quad \angle H(j\omega) = \pi/4$$

$$\omega \gg a \quad \rightarrow \quad \angle H(j\omega) \approx \pi/2$$

Example 2: $H(s) = \frac{1}{1 + s/a}$ $|H(j\omega)| = \frac{1}{\sqrt{1 + \frac{w^2}{a^2}}}, \quad \measuredangle H(j\omega) = -\arctan(\omega/a)$

