Lecture 13: Natural Frequency and Bode Plot

Natural Frequencies

* No. of natural frequencies $=\#$ of independent initial conditions that can be assigned \equiv order of the circuit.
* can be obtained by solving for roots of the polynomial obtained by determinant of the node/mesh based network matrix.
* n natural frequencies $k_{1} e^{s_{1} t}+k_{2} e^{s_{2} t}+\cdots+k_{n} e^{s_{n} t}$ but it may happen that a frequency have multiplicity more than one.
e.g. $\frac{1}{(s+a)^{2}} \rightarrow k t e^{-a t}$
* System is stable, poles in LHP/simple poles in $j \omega$ axis; transient will die out or you get solution of form $\cos \omega_{0} t, \sin \omega_{0} t, u(t)$

Exercise - Find the natural frequencies of the following circuits

Hint: There could be additional poles at zero.
Laplace/Time domain analysis with loops of voltage sources and capacitors Example 1 : Assume capacitors are initially uncharged.

To satisfy KVL, capacitors voltages must also be of the form $K u(t) \quad \Rightarrow$ Impulsive current that charge both the capacitors.

In the Laplace domain,

$$
\begin{array}{r}
I(s)\left(\frac{1}{s C_{1}}+\frac{1}{s C_{2}}\right)=\frac{1}{s} \\
I(s)=\frac{C_{1} C_{2}}{C_{1}+C_{2}} \leftrightarrow i(t)=\frac{C_{1} C_{2}}{C_{1}+C_{2}} \delta(t)
\end{array}
$$

$$
\begin{array}{r}
V_{C_{1}}(s)=\frac{1}{s C_{1}} \frac{C_{1} C_{2}}{C_{1}+C_{2}}=\frac{1}{s} \frac{C_{2}}{C_{1}+C_{2}} \\
v_{C_{1}}(t)=\frac{C_{2}}{C_{1}+C_{2}} u(t) \\
v_{C_{2}}(t)=\frac{C_{1}}{C_{1}+C_{2}} u(t)
\end{array}
$$

We can also solve this problem in the time domain using capacitor charge equation

Switch capacitor circuits
Assume initial voltage across C_{1} is $V_{C_{1}}$ and C_{2} is initally uncharged. Final volage is V_{f}.

when switch is closed the charge in C_{1} will be redistributed so that final voltage is the same.

Initial voltage across C_{1} is $V_{C_{1}}(0)$
$Q=C_{1} V_{C_{1}}(0)=V_{f}\left(C_{1}+C_{2}\right)$

Bode Plots

* circuits is stable ($j \omega$ axis is in the ROC)
\Rightarrow Given $H(s)$, can find $H(j \omega)$ Plot response to $e^{j \omega t}$ (Eigenfunction). Plot magnitude and phase response.

$$
\begin{gathered}
e^{j \omega t} \rightarrow \underbrace{H(j \omega)} e^{j \omega t} \\
|H(j \omega)| \& \measuredangle H(j \omega)
\end{gathered}
$$

Example 1: $H(s)=1+s / a$

$$
\begin{aligned}
& H(j \omega)=1+j \omega / a \\
& |H(j \omega)|=\sqrt{1+\frac{w^{2}}{a^{2}}}, \quad \measuredangle H(j \omega)=\arctan (\omega / a) \\
& \begin{array}{l}
H_{d B}=20 \log _{10}|H(j \omega)| \quad \text { decibel } \\
\quad=10 \log _{10}|H(j \omega)|^{2} \\
\left|H\left(j \omega_{2}\right)\right|=10\left|H\left(j \omega_{1}\right)\right| \\
H_{1_{d B}}-H_{2_{d B}}=20 \log _{10} \frac{\left|H\left(j \omega_{2}\right)\right|}{\left|H\left(j \omega_{1}\right)\right|} \\
\quad=20 d B
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
\left|H\left(j \omega_{2}\right)\right|=2\left|H\left(j \omega_{1}\right)\right| \Rightarrow 6 d B \text { change } \\
|H(j \omega)|^{2}=1+\frac{w^{2}}{a^{2}} \\
H_{d B}=10 \log _{10}\left(1+\frac{w^{2}}{a^{2}}\right) \\
H_{d B} \approx 10 \log _{10} 1=0 \quad \omega \ll a ; \\
H_{d B} \approx 20 \log _{10} \omega / a \quad \omega \gg a
\end{array}
$$

$$
\begin{aligned}
\measuredangle H(j \omega)=\arctan (\omega / a) & \\
\omega \ll a \quad & \rightarrow \quad \measuredangle H(j \omega) \approx 0 \\
\omega=a & \rightarrow \quad \measuredangle H(j \omega)=\pi / 4 \\
\omega \gg a & \rightarrow \quad \measuredangle H(j \omega) \approx \pi / 2
\end{aligned}
$$

Example 2: $H(s)=\frac{1}{1+s / a}$

$$
|H(j \omega)|=\frac{1}{\sqrt{1+\frac{w^{2}}{a^{2}}}}, \quad \measuredangle H(j \omega)=-\arctan (\omega / a)
$$

$$
H_{d B}=-10 \log _{10}\left(1+\frac{w^{2}}{a^{2}}\right)
$$

Example 3: $H(s)=s$

$$
|H(j \omega)|=\omega, \quad \measuredangle H(j \omega)=\pi / 2
$$

Exercise $H(s)=\frac{1}{(1+s / 10)(1+s / 100)}$

$$
|H(j \omega)|=\frac{1}{\sqrt{1+\omega^{2} / 100} \cdot \sqrt{1+\omega^{2} / 10^{6}}}
$$

