Lecture 12: Natural frequencies

Natural frequencies

$$
\begin{gathered}
V_{i n}=i R+L \frac{d i}{d t}+\frac{1}{C} \int i d t \\
\frac{d V_{i n}}{d t}=L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{i}{C}
\end{gathered}
$$

characteristic equation: Assume solution is $e^{s t}$ and substitute in differential equation.

$$
s^{2}+\frac{R}{L} s+\frac{1}{L C}=0
$$

Solve for roots of the characteristic equation and get natural frequencies

$$
s_{1}, s_{2}=-\frac{R}{2 L} \pm \sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}}
$$

solution : $k_{1} e^{s_{1} t}+k_{2} e^{s_{2} t}, \quad s_{1}, s_{2}$ are the natural frequencies
Equivalently,

$$
\begin{aligned}
V_{i n}(s) & =\left(R+s L+\frac{1}{s C}\right) I(s) \\
& =\frac{s^{2} L C+s R C+1}{s C} I(s) \\
I(s) & =\frac{s C}{s^{2} L C+s R C+1} V_{i n}(s)
\end{aligned}
$$

Roots of the denominator polynomial (poles) are the natural frequencies

* Independent of input - roots depends on $R, L, C \Rightarrow$ property of the system and nothing to do with input.
* unforced network; set all input $=0$ (short voltage source, open circuit current sources); solve for all branch currents/ voltages using initial conditions.

$$
k_{1} e^{s_{1} t}+k_{2} e^{s_{2} t}+\cdots+k_{n} e^{s_{n} t}
$$

zero-input solution: solve $k_{1}, k_{2}, \ldots k_{n}$ using initial voltages across capacitors and currents through inductors. If there is a initial condition such that $k_{i} \neq 0$ then s_{i} is a natural frequency.
The number of independent initial conditions that can be specified in the network determines the number of natural frequencies.

$\underbrace{\left[\begin{array}{cc}R_{1}+s L & -s L \\ -s L & R_{2}+s L+1 / s C\end{array}\right]}\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]=\underbrace{\left[\begin{array}{l}a \\ b\end{array}\right]}$
Network matrix (mesh basis) initial conditions

$$
\begin{gathered}
{\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\frac{1}{D}\left[\begin{array}{cc}
R_{2}+s L+1 / s C & s L \\
s L & R_{1}+s L
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]} \\
D=\frac{s^{2} L C\left(R_{1}+R_{2}\right)+s\left(R_{1} R_{2} C+L\right)+R_{1}}{s C} \\
I_{1}=\frac{\left(R_{2}+s L+1 / s C\right) a+s L(b)}{D}
\end{gathered}
$$

Denominator polynomial determines the natural frequencies. Given by the determinant of the network matrix. To get natural frequencies solve for roots of $D=0$. Note that Both I_{1} and I_{2} have same denominator polynomial.
The natural frequencies of any response in the circuit will belong to the set given by roots of $D=0$. All network variables need not have all the natural frequencies.

$$
k_{1} e^{s_{1} t}+k_{2} e^{s_{2} t}+\cdots+k_{n} e^{s_{n} t}
$$

Note:

zero input solution: $k_{1}, k_{2}, \ldots k_{n}$ is determined from initial conditions.
Natural response: $k_{1}, k_{2}, \ldots k_{n}$ is determined using both inputs and initial conditions.
When initial conditionas are zero, the zero input reponse is zero, but the natural response is not zero.

$$
\underbrace{\left[\begin{array}{cc}
2 s+1 & -s \\
-s & 2 s+1
\end{array}\right]}\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Node basis Network matrix (admittance matrix)

$$
D=3 s^{2}+4 s+1, s=-1,-1 / 3
$$

All capacitor voltages cannot be specified independently.

$$
\begin{aligned}
V_{c} & =V_{1}-V_{2} \\
& =\frac{s+1}{D} a-\frac{s+1}{D} b \\
D & =(s+1)(s+1 / 3)
\end{aligned}
$$

V_{c} has only one natural frequency; $s=-1 / 3$

$\left.\begin{array}{l}i=C \frac{d V}{d t} \\ V=L \frac{d i}{d t}\end{array}\right\}$
same natural frequency

$$
\begin{aligned}
& \frac{d}{d t} e^{s_{1} t}=s_{1} e^{s_{1} t} \\
& \int e^{s_{1} t}=\frac{1}{s_{1}} e^{s_{1} t}
\end{aligned}
$$

eigenfunction
For all three elements, i and v have the same natural frequencies (Eigenfunction property).

