EE2001 - Digital systems lab Clocks, Flipflops and State machines

Vinita Vasudevan

Why do we need flip-flops, registers?

- The arrival time for each output is different. It varies from IC to IC.
- As combinational circuits become larger, it becomes difficult/impossible to figure out when to check outputs.
- Use registers (flip flops) to store outputs and clocks to synchronize operations

Register transfer, State machines

- Periodically store outputs using edge triggered flip-flops. Now we know outputs are available at clock edge.
- Clock frequency depends on the largest delay - delay of critical path. Estimate this delay and add some margin to get the clock period.
- Can also the feed the outputs back - State machine. Here, the "next state" of the register depends on the "present state"; Example - counters.

Clocks

- Crystal oscillators - Most accurate and stable
- Ring oscillators - Clock frequency variations large due to manufacturing variations
- Multivibrators based on RC time constants

555 Timer

- When $V<\frac{V_{c c}}{3}$, S-R latch is set and output $Q=1$
- When $V>\frac{2 V_{c c}}{3}$, S-R latch is reset and output $Q=0$. Since $\bar{Q}=1$, the transistor is ON and the capacitor discharges.
- Charging time constant: $\left(R_{1}+R_{2}\right) C$. Discharging time constant $=R_{2} C$

State Machines: Modelling using Verilog


```
module StateMach( X, Z, clock);
input X ;
input clock;
output Z;
reg PresentState;
wire NextState;
    always@(posedge clock)
begin
PresentState = NextState
end
assign Z = X & PresentState;
assign NextState = X | PresentState;
endmodule
```


Propagation delays of a (edge triggered) Flipflop

- Setup time: The time for which the data should be stable before arrival of the clock edge.
- Clock-to-Q delay: The last input to arrive should be the clock. The delay between the arrival of the clock edge and the output transition is the propagation delay.

Experiment 9

Objective: Model and build Sequential circuits

- Realize a 1 kHz oscillator using the 555 timer. Use both channels of the oscilloscope to display the capacitor and output voltage. How will you achieve a duty cycle of nearly 50% with the 555 ? The minimum R_{1} should be about $1 \mathrm{k} \Omega$, so that the capacitor is able to discharge through the transistor.
- Using 3 bits of the 4 bit counter (74163) and parallel load, construct a mod-5 counter that counts from 0,1,2,3,4 and back to 0 .
- Design a 4 bit ripple counter using J-K Flipflops. Estimate the propagation delay of the flip-flop. If measurement is difficult, increase the number of bits.
- Design a sequential circuit with two D flip flops A and B and one input $x_{i n}$. When $x_{i n}=0$, the state of the circuit remains the same. When $x_{i n}=1$, the circuit goes through the state transitions from $00,01,11,10$ and back to 00 and repeats. (a) Model and simulate the statemachine using Verilog. (b) Wire and test it on breadboard.

