EE2001 - Digital systems lab

EE2001 - Digital systems lab

Vinita Vasudevan

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Objectives

- Practical aspects of digital design Augment the theory course
- In the theory course study gates at functions/logic level.
- Logic '0' and '1' are represented by voltages. Components have nonzero input and output currents.
- Each component has a datasheet detailing input and output behaviour.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How do you design using these datasheets?

Practical aspects

- What is the range of voltages representing a logic high and low?
- What is the maximum number of gates that can be connected to the output of a gate? (Fanout)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Propogation delay
- Power consumed

Range of voltages corresponding to logic high and low levels - different for different logic families. You will be using TTL or LSTTL gates.

- Typical output high and low voltages (V_{OH} and V_{OL})
- Lowest output voltage that will be regarded as a logic 1 at the input. (V_{IH})
- Highest output voltage that will be regarded as a logic 0 (V_{IL})

```
Noise margins:

NM_H = V_{OH} - V_{IH},

NM_L = V_{IL} - V_{OL}
```

Voltage transfer characteristics

Practical gates - 74xx LSTTL

	MIN	NOM	MAX	Units
Supply Voltage <i>V_{CC}</i>	4.75	5	5.25	V
High level output current <i>I_{OH}</i>			-400	μA
Low level output current, I _{OL}			8	mA
Operating free air temperature	0		70	°C

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

	MIN	NOM	MAX	Units
High level input voltage V _{IH}	2			V
Low level input voltage V_{IL}			0.8	V
High level output voltage V_{OH}	2.7	3.4		V
Low level output voltage V_{OL}		0.25	0.5	V
High level input current, I _{IH}			20	μA
Low level input current, I _{IL}			-0.4	mA

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Output characteristics

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - の久(で)

Maximum number of gates that can be connected when output voltage is low

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Maximum number of gates that can be connected when output voltage is high

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Fan-out of the gate is the minimum of (N_H, N_L) .

Practical Gates: Data sheets

recommended operating conditions

	54 FAMILY 74 FAMILY	Y SERIES 54 Y SERIES 74 '00, '04, '10, '20, '30			SERIES 54H SERIES 74H 'H00, 'H04, 'H10, 'H20, 'H30			SERIES 54L SERIES 74L			SERIES 54LS SERIES 74LS			SERIES 54S SERIES 74S			Γ																								
- 4								'L00, 'L04, 'L10, 'L20, 'L30		14, 'L30	'LS00, 'LS04, 'LS10, 'LS20, 'LS30			'S00, 'S04, 'S10, 'S20, 'S30, 'S133			UNIT																								
-		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	1																								
Supply voltage Von	54 Family	4.5	5	5.5	4.5	5	5.5	4.5	5	5.5	4.5	5	5.5	4.5	5	5.5	-																								
	74 Family	4.75	5	5.25	4.75	5	5.25	4.75	5	5.25	4.75	5	5.25	4.75	5	5.25	v																								
High-level output current Loui	54 Family	-400		500		-100		-100	-400		-400	-100		-1000	-																										
in strate output carrent, IOH	74 Family	-400			-400			-400			-400		-400		-400		-400		-400		-400		-400	-400	-400	-400				-500				-200	-	-400		-10		-1000	μA
Low-level output current, IOL	54 Family		16			20				2	1	4		-	20																										
	74 Family	-		- 16	-		20			3.6	-		8	-		20	mA																								
Operating free-air temperature T	54 Family	-55		125	-55	1	125	-55		125	-55		125	-55		125	-																								
	74 Family	0		70	0		70	0		70	0		70	0		70	°C																								

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Practical gates: Data sheets

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SE	SERIES 54 SERIES 54H SERIES 74 SERIES 74H			54H 74H	SERIES 54L SERIES 74L			SERIES 54LS SERIES 74LS			SERIES 54S SERIES 74S																
	PARAMETER	FIGURE	T TEST CONDITIONS		is [†] '00, '04, '10, '20, '30			30	'H00, 'H04, 'H10, 'H20, 'H30			'L00, 'L04, 'L10, 'L20, 'L30			'LS00, 'LS04, 'LS10, 'LS20, 'LS30			'S00, 'S04, 'S10, 'S20, 'S30, 'S133		.4, 10, 33	UNIT											
						MIN TYP: MAX M		MIN TYPE MAX		MIN	MIN TYPE M		MIN	MIN TYP! MAX		MIN TYPE MA		MAX	1													
VIH	High-level input voltage	1, 2						1997	2			2		2	2		2			V												
VII	Low-level input voltage	1.2			54 Family			8.0			0.8			0.7			0.7			0.8												
					74 Family			8.0			0.8			0.7			0.8			0.8	1 V											
VIK	Input clamp voltage	3	V _{CC} = MIN, I _I = §					-1.5			-1.5						-1.5			-1.2	V											
VOH	You High-level output voltage	1	V _{CC} = MIN,	VIL = VIL max.	54 Family	2.4	3.4		2.4	3.5	1	2.4	3.3		2.5	3.4		2.5	3.4	_												
011			IOH = MAX		74 Family	2.4	3.4		2.4	3.5	1	2.4	3.2		2.7	3.4		2.7	3.4		V											
			V _{CC} = MIN,	Voo - MIN	Voo - MIN	lor = MAX	54 Family		0.2	0.4		0.2	0.4		0.15	0.3		0.25	0.4			0.5	-									
VOL	Low-level output voltage	2		. OL MON	74 Family		0.2	0.4	1	0.2	0.4		0.2	0.4	-	0.25	0.5	-		0.5	V											
-														- 111	IOL = 4 mA	Series 74LS			1	1	1	1				-		0.4				1.
h	Input current at	4	V MAY		V1 = 5.5 V			1	-	34	1			0.1	1					1	-											
	maximum input voltage		CC - MAA		V1 = 7 V				-	1	-						0.1				mA											
	Wish level is such as seen as														VIH = 2.4 V			40	-		50	-		10	-			-			-	
414	ITH inginiever input current	4	VCC = MAX	CC = MAX					-						20		20	-	EC		μA											
	265				VII = 0.3 V				-			-	-	0.18	-					00												
11L	Low-level input current	5	V _{CC} = MAX		V11 = 0.4 V			-1.6	1	-2		0.10		0.10	- 0.4		-04		-		-											
1.1					VII = 0.5 V				-								0,4	-			11114											
1	Short-circuit				54 Family	-20		-55	-40		-100	-3		-15	20		100	-40		-2	-											
OS	output current®	6	VCC = MAX		74 Family	-18		-55	-40		-100	-3		-15	-20		100	-10		-100	mA											
1CC	Supply current	7	V _{CC} = MAX	V _{CC} = MAX					1,11,23			See tab	le on n	extor	ne		-100	40		-100	mA											

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへぐ

Experiment 4 - Input and Output characteristics of LSTTL gates

Objectives

- 1. To get familiar with data sheets of TTL logic gates
- 2. To understand various static logic gate characteristics: typical output high and low voltages, noise margins, input and output current levels and fanout.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Transfer characteristics

Using the following circuit , measure the output voltage while changing the magnitude of the input voltage slowly.

Output characteristics

Using circuit (3), measure the output current as a function of the output voltage when both the inputs of the NAND gate are in logic-1 state.

Using circuit (4), measure the output current as a function of the output voltage, when both the inputs are in logic 0 state.

Input Characteristics

Using the following circuit, measure the input current as a function of the input voltage.

From these experiments find the fan-in and fanout of the NAND gate

General Instructions for all experiments

- First download datasheets for all components and get pin diagrams.
- Must strictly use a colour code for the wiring. For eg. use red wires for V_{CC}, black for ground and green for signals. This will make it easier to debug.
- Use the two vertical bars on the edges of the breadboard for V_{CC} and Ground.
- A circuit should a single reference voltage. All Grounds should be connected together, including that of the measuring instrument
- Connect V_{CC} and Ground of all components and do a simple functional check of each component before you start woring.
- All wires should be cut to the required length.

- Plan the layout of the circuit in such a way that there is enough free space for wiring and probing. Ensure that open ends of multiple wires do not touch each other.
- Check the wiring before powering up the circuit.
- Make any modifications after disconnecting/switching off the power supply.
- In case the outputs are different from the expected values, as a primary step in debugging, check if the V_{CC} and GND pins get their appropriate values in all the ICs used in the circuit.
- You should design and wire up the circuit on Monday. The lab session on Tuesday is meant for testing, debugging and understanding results.
- Each group should have a lab notebook that has the circuit design and a record of the results obtained. At the end of each session, get it signed by the teaching assistant.