
EE2001 - Digital systems lab

EE2001 - Digital systems lab

Vinita Vasudevan

EE2001 - Digital systems lab

2s complement

I The decimal value of a n-bit binary number is
n−1∑
i=0

ai2
i .

I If a negative number is represented in the twos complement

form, its decimal value is −(2n −
n−1∑
i=0

ai2
i).

I In practice it is obtained by first subtracting the number from
2n − 1 (each bit is complemented) and then adding 1 to the
number.

I For a positive number an−1 = 0 and for a negative number
an−1 = 1.

I Positive number the decimal value is
n−2∑
i=0

ai2
i . Negative

number: −(2n − 2n−1 +
n−2∑
i=0

ai2
i) = −2n−1 +

n−2∑
i=0

ai2
i

EE2001 - Digital systems lab

2s complement

I In general, the value is −an−12n−1 +
n−2∑
i=0

ai2
i

I if A is an n bit number an−1an−2 · · · ao , we need A−A = 0. If
the sum is also n bits, throw away the carry out from the MSB

I If the sum is n + 1 bits? Do a sign extension. Verify that the
decimal value of the number does not change with sign
extension.

I How do you deal with fractions?

EE2001 - Digital systems lab

Functional Simulation: Behavioural Modelling
High level model specifying circuit function, without getting into
actual implementation

Instruction
register

Control
unit

Registers

ALU

External memory (Instructions and data)

Memory controller

DataAddress

Need to verify funcationality/execution behaviour of various
instructions, before going to gate level or even data flow level
modelling. Easier to write a C programe to verify functionality,
using loops, case statements etc.

EE2001 - Digital systems lab

Behavioural modelling also useful for components.
Example: Multiplexer

I1

I2

I3

I0

S0 S1

Out

4 to 1 MUX

Out = S̄1S̄0I0+S̄1S0I1+S1S̄0I2+S1S0I3

C program

i f (!S0 && !S1)
{

Out = I0
}
e l s e i f (!S0 && S1)
{

Out = I1
}
e l s e i f (S0 && !S1)

{
Out = I2

}
e l s e

{
Out = I3

}

EE2001 - Digital systems lab

Data flow modelling using Verilog

module mux4(I0, I1, I2, I3 , s , out) ;

input I0, I1, I2, I3 ;
input[1:0] s;
output out
wire t0, t1;

assign t0 = (˜s[1] & I0) | (s[1] & I2);
assign t1 = (˜s[1] & I1) | (s[1] & I3);
assign out = (˜s[0] & t0) | (s[0] & t1);

endmodule

module mux4(I0, I1, I2, I3 , s , out) ;

input I0, I1, I2, I3 ;
input[1:0] s;
output out;

assign out = (s == 0)? I0:
(s == 1)? I1:
(s == 2)? I2:
(s == 3)? I3: 1’bx;

endmodule

EE2001 - Digital systems lab

Behavioural Modelling

module mux4(I0, I1, I2, I3 , s , out) ;

input I0, I1, I2, I3 ;
input[1:0] s;
output out;
reg out;

always@(I0 or I1 or I2 or I3 or s)
begin
if (s == 0)
out = I0;

else if (s == 1)
out = I1;

else if (s == 2)
out = I2;

else if (s == 3)
out = I3;

end

endmodule

I Code is similar to C

I The arguments to the always block
constitute the sensitivity list. Any
change in these inputs will cause
the always block to execute

I The statements within the always
block are executed sequentially

I In order to assign values to it,
“out” has to be declared as “reg”
(similar to what we did in test
benches).

EE2001 - Digital systems lab

Can mix models

module c i r c u i t (I0, I1, I2, I3 , s , a , b , c , d) ;

input I0, I1, I2, I3 ;
input a, b;
input[1:0] s;
output c, d;
reg out;

always@(I0 or I1 or I2 or I3 or s)
begin
case(s)
0: out = I0;
1: out = I1;
2: out = I3;
3: out = I3;

end

assign c = out & a;

xor x1(d, out, b);

endmodule

a

b

c

d

out

I0

I1

I2

I3

s[0] s[1]

EE2001 - Digital systems lab

Experiment 3: Behavioural modelling using Verilog

Objective:Model circuits using behavioural models.

I Try out the behavioural and data flow model of a 4-to-1 MUX.

I Model a 1-to-4 demultiplexer using a behavioural model.

I Repeat the experiment using a data-flow model model.

I A and B are 4-bit inputs and the output of the circuit is
MAX (A,B). You can use a mix of data flow and behavioural
models if you wish.

In all three cases, write a test bench to test the circuit.

