
EE2001 - Digital systems lab

EE2001 - Digital systems lab

Vinita Vasudevan

EE2001 - Digital systems lab

Basic shell commands

Login and open a terminal. The default shell in Linux is Bash
(Bourne again shell).

I After you login, you are in your home directory
(/home/rollnumber). Check using pwd (environment variable
that will give you the current working directory)

I Create a directory called verilog (mkdir verilog) and change to
that directory (cd verilog). Figure out what cd .. does.

I List files in a directory (ls or ls -la)

I Get help about a command - man command-name. (man ls
will show you the manual pages for ls)

I Set permissions for files - read man pages for chmod.

EE2001 - Digital systems lab

Logic Simulation: Limitations of using C

I Forced to use unsigned char/short int as the data type even
though we are interested only in the last bit.
It is inefficient in terms of memory

I In a conventional programming language, statements are
executed sequentially. The order in which the statements are
executed matters.
Cannot call functions in arbitrary order. Functions whose
outputs depend only on primary inputs must be evaluated first
(level 1 gates). This must be followed by functions that
depend on primary inputs and level 1 outputs and so on.
Functions must be evaluated in topological order

EE2001 - Digital systems lab

Inp1

Inp2

Inp3

Inp1

Inp1

Inp2

Inp2

Inp3

Inp3

s1

out1

s2

s3

s4

s5

out2

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

10

w h i l e (f s c a n f (f i n , ”%hu . . . ” , . . .) ! =EOF)
{

XOR(&s1 , Inp1 , Inp2) ;
XOR(&out1, s1, Inp3);
AND(&s2 , Inp1 , Inp2) ;
AND(&s3, Inp1, Inp2);
AND(&s5, Inp1, Inp2);
OR(&s4 , s2 , s3) ;
OR(&out2 , s4 , s5) ;

}

The functions are called and
executed even if their inputs do
not change. Inefficient in terms
of simulation time

EE2001 - Digital systems lab

What kind of a simulator do we want?

I Declare variables in terms of number of bits required for
representation

I A gate must evaluate only when one or more of its inputs
change - Event driven simulator

I The order in which functions calling the gates are typed in
should not matter. Inherently, the digital system operates in
“parallel”. Gates evaluate independently when there is a
change in their inputs. We need a simulator that mimics this
behaviour.

I Digital systems are large: Need to be able to describe
behaviour hierarchically.

I Should be versatile - need to describe a variety of
components: Memory, buses, CPU, logic circuits

EE2001 - Digital systems lab

Introduction to a Hardware Description Language (Verilog)

Input ports Output ports

Circuit

Circuit 1
Circuit2

Circuit 3

Circuit4

I Uses modules (functions) and interfaces to the modules called
ports (arguments).

I Basic gates are predefined (both as gates and bit operators)
I Hierarchical modelling
I Mixed modelling - Separate behaviour from implementation

(eg: sum = a + b; ’+’ indicates addition)

EE2001 - Digital systems lab

Verilog data, modules and Ports

Data Values:

I 0, 1, X (unknown), Z
(tristate)

I a[3:0] =⇒ a[0] is the LSB
and a[3] is the MSB

module C i r c u i t (out1 , out2 , Inp1 , Inp2) ;

input Inp1, Inp2;
output out1, out2;

HDL Modelling of functionality

endmodule

module A(a , b , sum , cout) ;

input[3:0] a, b;
output[3:0] sum;output cout;

HDL Modelling of functionality

endmodule

EE2001 - Digital systems lab

Half Adder - Gate level and Data flow model

a b sum cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

I Gates and, or, not, xor,
nand, nor, xnor predefined

I Bit operators similar to C

I The inputs a and b are in
the “sensitivity list”. If there
is any change in a or b, the
corresponding output is
re-evaluated.

Gate level Model
// Ha l f adder module

module ha (a , b , sum , cout) ;

i n pu t a , b ;
output sum , cout ;

xor x1(sum , a , b) ;
and a1(cout , a , b) ;

endmodule

Data flow model of half adder:
// Ha l f adder module

module ha (a , b , sum , cout) ;

i n pu t a , b ;
output sum , cout ;

assign sum = a ˆ b ;
assign cout= a & b ;

endmodule

EE2001 - Digital systems lab

Hierarchical Modelling

a b cin sum cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

sum(a, b, cin) = Σ(1, 2, 4, 7)

= a⊕ b ⊕ cin

cout(a, b, cin) = Σ(3, 5, 6, 7)

= a b + b cin + a cin

Use two half adders to build a
full adder

ab

cin

HA

HA

sum cout

s1
c1

c2

EE2001 - Digital systems lab

Hierarchical modelling

A module can contain other modules through module
instantiation.

I Modules are connected together using nets

I Ports are attached to nets either by position or name

module FA(a in , b in , c a r r y i n , sum , cout) ;

i n pu t a in , b in , c a r r y i n ;
output sum , cout ;
w i r e s1 , c1 , c2 ; These are nets connecting the half adders and OR gates

ha ha1(.a(ain), .b(bin), .cout(c1), .sum(s1));// Bind to signals by name
ha ha1 (a in , b in , s1 , c1) ; // By position
ha ha2 (s1 , c a r r y i n , sum , c2) ;
o r or1 (cout , c1 , c2) ;
// assign cout = c1 | c2;
endmodule

Can interchange the order of the statements without affecting the
output

EE2001 - Digital systems lab

Testbench

I The testbench is also a module

I Data type called “reg”. Can assign values to variables that
are declared as reg.

I Data format

4b’1001 8h’AF

Number

of bits

Format

Hex

I Declared as
reg[3:0] a;
a = 4’b1010;

EE2001 - Digital systems lab

// Ha l f adder t e s t bench

module t e s t h a ; // t e s t bench module
w i r e s , c ; // ou tpu t s from h a l f adder
r eg a , b ; // i n p u t s to the h a l f adder module

ha DUT(a , b , s , c) ; // i n s t a n t i a t e the d e v i c e under t e s t (h a l f adder)

i n i t i a l
b eg i n
$moni tor (”At t=%t , a=%b , b=%b , s = %b , c=%b” , $time , a , b , s , c) ;
a = 1 ; b = 1 ; // t = 0
#10 a = 1 ; b = 0 ; //change values of a and b after 10 units of time
#10 a = 0 ; b = 1 ; // t = 20
#10 a = 0 ; a = 0 ;

#10 $ f i n i s h ;
end
endmodule

EE2001 - Digital systems lab

Experiment 2: Logic Simulation using Verilog

Objective:Model circuits using Gate-level and data flow technique.
Create test benches to test the circuit.

I Build a full adder using

a. Gate-level modelling
b. Data-flow modelling

You should have two different files descibing the circuit using
various approaches and one file containing the testbench. Do
not use half adders to build the full adder.

I Use the full adder to build a five bit adder and do a logic
simulation

EE2001 - Digital systems lab

I A and B are 4 bit twos complement numbers (ranging from -8
to +7). The range of A+B is -16 to 14, which requires 5 bits.
Design a circuit that has a select input S so that if S = 1, the
output is A+B (addition), else the output is A-B. Before
doing the addition, remember to do a sign extension of the
inputs. Use the 5 bit adder you built in the previous question.

I Learn to use concatenate and conditional assign.

I The testbench and circuits should be in different files. The
full adder and five bit adder can be in a single file. The
adder/subtractor must be in a different file.

EE2001 - Digital systems lab

Iverilog and gtkwave

I to ”compile” use the command
iverilog file1.v file2.v -o circuit

I To run
vvp circuit

I To check waveforms use the package gtkwave. Need to add
the following statements in the testbench.

$dumpf i l e (” t e s t c i r c u i t . vcd”) ;
$dumpvars (0 , t e s t c i r c u i t) ; //Name o f t e s t b en ch module

Here the module for the testbench is test circuit.

I To get the units of time use

‘ t im e s c a l e 1 ns /100 ps // Be fo r e module d e c l a r a t i o n

$t ime fo rmat (−9 ,1 ,” ns ” , 5) ; // Be fo r e mon i to r s ta t ement
$moni tor (”%t ” , $time , ” a i n=%b , b i n=%b , c i n=%b , sum=%b , c a r r y=%b” , a in , b in , c in , sum , cout) ;

