Introduction to Electrical Engineering Howework 5

1. Are the following signals periodic? If so, find the period.
a. $2+5 \sin 4 t+4 \sin 7 t$
b. $2 \cos \sqrt{2} t+4 \cos 3 t$
2. A periodic signal is expressed by the following Fourier series:
$x(t)=3+2 \cos 2 t+5 \sin 2 t+\sin 3 t-\frac{1}{4} \cos \left(5 t+\frac{\pi}{6}\right)$
Find the complex exponential series and sketch the magnitude and phase spectra.
3. For each of the following periodic signals, find the Fourier series representation and plot the magnitude and phase spectra.

4. In the circuit shown below, the diode has a reverse saturation current $I_{o}=0.1 \mu \mathrm{~A}$. Assume $V_{T}=25 \mathrm{mV}$. The non ideality factor is 1. Use trial and error and find the current in the circuit.

5. In the following circuit, $V_{s}(t)=100 \sin 10 t$. Assuming that the diode is ideal,
a. Sketch the current as a function of time
b. Find the average and rms value of the current.

6. The input voltage $v(t)=5 \sin 2 t$. Sketch $v_{o u t}$ as a function of time. The diodes are ideal.

7. The input voltage $V_{s}(t)=\sin t$. Assuming that the diodes are ideal
a. Draw the waveform of the voltage developed across R_{L}.
b. Find the complex exponential Fourier series expansion of V_{L}.
c. If V_{L} is approximated by the first $2 N+1$ terms ($-N$ to N) of its Fourier series, determine N so that the power of the approximated signal is 99% of the power of $V_{L}(t)$.

8. For the circuit shown below
a. Find the complex Fourier series expansion of $\mathrm{f}(\mathrm{t})$ assuming that the time period of the waveform is $2 \pi \mathrm{~ms}$.
b. Find $V_{\text {out }}$.

9. An AM signal is given by $[A+$ $m(t)] \cos 2 \pi 10^{4} t$, where $m(t)$ is the periodic triangular waveform shown in the figure below. Sketch the waveform from 0 to 1 ms for (a) $A=20$ and (b) $A=5$.

Can an envelope detector be used to detect the received signal in the two cases?
10. Sketch the magnitude spectrum of $y(t)=[1+$ $m(t)] \cos 10^{5} t$ if
a. $\mathrm{m}(\mathrm{t})=0.5 \cos 1000 t$
b. $\mathrm{m}(\mathrm{t})=0.6 \cos 1000 t \cos 3000 t$

What is the percentage modulation in each case?
11. In the network shown below, find the expression for voltage gain and input resistance for the following two cases.
a. A finite value of β.
b. In the limit as β tends to ∞.

12. Find $\frac{v_{\text {out }}}{v_{s}}$ in the limit as R_{i} tends to infinity.

13. In the circuit shown, find $I_{C}, V_{C E}$ and the voltage gain.Assume $V_{B E}=0.7 \mathrm{~V}$ and an infinite β.

