VLSI DATA CONVERSION CIRCUITS: PROBLEM SET 2

Problem 1

A signal x(t) is known to be of the form $A_1\sin(2\pi f_{in}t+\phi_1)+A_2\sin(2\pi 2f_{in}t+\phi_2)+A_3\sin(2\pi 3f_{in}t+\phi_3).$ x(t) is sampled at a rate $f_s>6f_{in}.$ 1024 samples are taken and multiplied with a **Blackman-Harris Window**. The magnitude of the FFT of the resulting 1024 point sequence is given in the attached file y.mat. In other words, denoting the window by w[n] and the sampled input sequence by x[n], y[n] is obtained using the following MATLAB command y=abs(fft(x.*w')). How will you determine A_1, A_2 and A_3 from y?

Problem 2

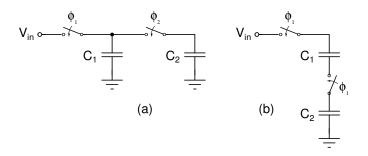


Figure 1: Circuits for Problem 2.

In class, we derived a parasitic insensitive switched capacitor amplifier developing the basic idea shown in Fig. 1(a). Here, C_1 is charged to V_{in} in ϕ_1 , and we attempt to transfer this charge (C_1V_{in}) onto C_2 in ϕ_2 . This problem investigates another line of thought, which aims to accomplish the same objective. The basic idea is shown in Fig. 1(b). The argument is as follows - if C_1 and C_2 were initially uncharged, when they are simply connected in series with V_{in} as illustrated in the figure, the charge on the top plate of C_2 will be equal in magnitude to that on the bottom plate of C_1 . The trick is, therefore, to figure out how C_2 should be chosen so that the charge in C_1 can be made to be C_1V_{in} . Once you know this, proceed along the same lines as we did in class to derive another parasitic insensitive amplifier and accumulator.

Problem 3

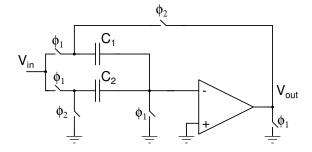


Figure 2: Circuit for Problem 3.

- Determine the gain of the switch-capacitor amplifier shown in Fig. 2. What should C_2 be (in terms of C_1) to achieve a gain of 2? Assuming an opamp transfer function of GB/s, plot GB required to achieve 0.1% output settling in a time $T_s/2$.
- The opamp has a finite gain A. $C_1 = C_2$. Determine the amplifier gain now.
- Draw and simulate a fully differential version of the circuit of Fig. 2. For simulation, use the macromodel for the fully differential opamp, as shown below. Assume that the opamp is sampling at a rate of 25 MHz. Use real switches, and a real non-overlapping clock generator. Determine Cdom in the macromodel so that the output of the amplifier settles to better than 0.1% of the final value in half a clock cycle. Use $V_{cm}=0.9\,\mathrm{V}$, $Vmax=1.6\,\mathrm{V}$ and $Vmin=0.2\,\mathrm{V}$. The input to be amplified is a 1 MHz fully differential sine-wave with an amplitude of 1 V (p-p differential), with a common-mode voltage of 0.9 V. Plot the input and output waveforms, as well as the waveforms at the inputs of the opamp.

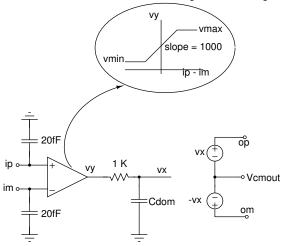


Figure 3: Opamp macromodel for Problem 3.