ANALOG CIRCUITS : PROBLEM SET 5

Problem 1

(CURRENT SOURCE) The following configuration acts like a constant current source for varying loads R_{L}. Within what range can R_{L} vary ?

Suppose that R_{L} varies from 1 K to $5 \mathrm{~K} . v_{C E}$ must be greater than or equal to 1 volt, always. Also $I_{o}=2 \mathrm{~mA}$; $I_{o} R_{e}=5 \mathrm{~V}, V_{B E}=0.65 \mathrm{~V}$. Find R_{1}, R_{2}, R_{e} and $V_{e e}$ assuming current in the resistors on the base side to be 1 mA .

Figure 1: Problem 1

0.1 ANSWERS 1:

$$
\begin{aligned}
V_{e e} & =16 \mathrm{~V} \\
R_{1} & =10.35 \mathrm{~K} \\
R_{2} & =5.65 \mathrm{~K} \\
R_{e} & =2.5 \mathrm{~K}
\end{aligned}
$$

Problem 2

v_{o} should just begin to distort at both the ends. Calculate $V_{c c}$ and $V_{e e}$. Take $V_{B E}=0.65 \mathrm{~V}$ nominally. $v_{s}=6 \sin \omega t \mathrm{~V}$.

Figure 2: Problem 2

0.2 ANSWERS :

$$
\begin{aligned}
V_{C C} & =12 \mathrm{~V} \\
V_{e e} & =6.65 \mathrm{~V}
\end{aligned}
$$

Note: The circuit is directly coupled and level shifting is brought about by use of a pnp transistor.

Problem 3

(RESISTANCE OF CURRENT SOURCES). Consider the following current sources used in integrated circuits. All unmarked transistors have size (W/L). The device marked 0.25 in part (c) has a size of 0.25 (W/L). All unmarked transistors have a $V_{S G}-\left|V_{T P}\right|=\Delta V$, and an output resistance of r_{o}. For each of the current sources, determine the incremental output impedance and the highest voltage that can be supported before one of the devices in the current source goes out of the active region.

Figure 3: Problem 3

Problem 4

All transistors are identical and the Q-currents in all three are the same. $V_{E B}$ or $V_{B E}=0.65 \mathrm{~V}$, nominally. For $T_{3}, V_{E C Q}$ $=7 \mathrm{~V}$ and $I_{C Q}=2 \mathrm{~mA}$.
Find R_{1}, R_{2}, R_{3} and $V_{C C}$.

Figure 4: Problem 4

0.3 ANSWERS :

$$
\begin{aligned}
R_{1} & =1.8375 K \Omega \\
R_{2} & =3.325 K \Omega \\
R_{3} & =16 K \Omega \\
V_{C C} & =21 \mathrm{~V}
\end{aligned}
$$

Problem 5

Take $V_{B E}$ or $V_{E B}=0.65 \mathrm{~V}$, nominally. Assume ideal DC functioning with 0 DC offset at the output. Take $V_{T}=25 \mathrm{mV}, \beta=$ 200. Find all dc Q-level voltages and currents.Calculate k, $R_{i a}, R_{o a}$.

Figure 5: Problem 5

$$
\begin{array}{ll}
T_{5} & V_{C E Q}=15 \mathrm{~V} \\
T_{6} & V_{C E Q}=9 \mathrm{~V} \\
T_{7} & V_{C E Q}=15.65 \mathrm{~V} ; 1.956 \mathrm{~mA}
\end{array}
$$

Problem 6

$V_{B E}$ or $V_{E B}=0.65 \mathrm{~V}$, nominally. Take $\mathrm{R}=100 \Omega, V_{T}=25 \mathrm{mV}$, $h_{f e}=299$. Current sources C_{1} and C_{4} are ideal while C_{2} and C_{3} have an incremental resistance of R_{C} which is 337.5 K .

Figure 6: Problem 6

Calculate k, $R_{i a}, R_{o a}$ for small signals.

0.5 ANSWERS:

$\mathrm{k}=-90518.5125 ; R_{i a}=300 \mathrm{~K} \Omega ; R_{o a}=1.15 \mathrm{~K} \Omega$.

Problem 7

Figure 7: Problem 7

Current source C_{3} is ideal while C_{1} and C_{2} have an incremental resistance of $200 \mathrm{~K} . V_{T}=25 \mathrm{mV}, \beta=265$. Find R_{C}, $R_{i a}, R_{o a}, \mathrm{k}$ and the CMRR. Find also the allowed swings of v_{o}.

0.6 ANSWERS :

$$
\begin{aligned}
R_{C} & =16.65 K \\
R_{i a} & =13.3 K \\
R_{o a} & =87.59 \Omega \\
k & =43956.6 \\
C M R R & =128 * 10^{6} \\
-8.7 & <v_{o}<8.7
\end{aligned}
$$

Problem 8

Figure 8: Problem 8
v_{1} and v_{2} are very small signals. $v_{o}=\mathrm{k}\left(v_{1}-v_{2}\right)$. Determine k in sign and magnitude. $V_{T}=25 \mathrm{mV}, \beta=99$. As usual, neglect base currents for operating point calculations.

0.7 ANSWERS :

$\mathrm{k}=+4538.1284$

Problem 9

Take $V_{B E}=0.65 \mathrm{~V}$, nominally. For the input signal shown both transistors should be swung to their limits of their ac-
tive regions during the signal cycle. Find $V_{C C}, R_{e}$ and the ratio R_{x} / R_{y}. Assume $R_{x} \| R_{y}$ in the order of R_{e}.

Figure 9: Problem 9

0.8 ANSWERS :

$V_{C C}=16.65 \mathrm{~V} ; R_{e}=8 \mathrm{~K} ; R_{x} / R_{y}=1.08125$

Problem 10

Figure 10:

Take $V_{B E}=0.65 \mathrm{~V}$, nominally. $V_{\text {smax }}$ is such that both transistors are swung to limits of their active regions during the signal cycle. Find $R_{1}, R_{2}, R, V_{\text {smax }}$ and $V_{\text {omax }}$.

0.9 ANSWERS :

$$
\begin{aligned}
R_{1} & =25 K \\
R_{2} & =6.25 K \\
R & =5 K \\
V_{\text {smax }} & =5 \mathrm{~V} \\
V_{o m a x} & =4 \mathrm{~V}
\end{aligned}
$$

Problem 11

All capacitors are very large valued. Take $V_{B E}=0.65 \mathrm{~V}$, nominally. v_{c} is given to be a small signal, v_{m} is not a small signal. $V_{T}=50 \mathrm{mV}$, assume α to be 1 . Find $v_{o}(t)$, the total output voltage including the DC component. Also find the limits within which $v_{m}(t)$ should lie so that all transistors are always in their active regions. To find these limits assume $v_{c} / V_{T} \ll 1$.

Figure 11: Problem 11

