ANALOG CIRCUITS: PROBLEM SET 4a

shanthi@ee.iitm.ac.in

Problem 1

For the transistor shown $\frac{\eta kT}{q}=40\,\mathrm{mV}$, $\beta=99$, $V_{BE}=0.65\,\mathrm{V}$ nominal. Find V_{CEQ},R_i,R_O , A_v and the incremental power gain. Assume $v_L=(1\,\mathrm{mV})\sin\omega\mathrm{t}$.

Problem 3

ANSWERS:

 $V_{CEQ} = 4.65 \, \text{V}, R_i = 2 \, \text{K}, R_o = 4 \, \text{K}, A_v = -24.75, Power gain} = 1225.125$

Problem 2

In the circuit shown, use $\alpha=0.995,\,V_T=25\,\mathrm{mV}.\,\,V_{CEQ}$ must be $5\,\mathrm{V}$ and R_i - the resistance presented by the circuit to the driving region v_s must be $1.5\,\mathrm{K}.\,$ Use $V_{BE}=0.7\,\mathrm{V}$ nominally. Calculate $V_{CC},\,R_1$ & R_2 to get a small signal gain of -200.

The input signal is small. A more comprehensive linear small-signal incremental equivalent circuit for the transistor is given in the form show below, where r_1 , r_2 , r_3 , g_m are $4\,\mathrm{K}\Omega$, $8\,\mathrm{M}\Omega$, $100\,\mathrm{K}\Omega$ & $50\,\mathrm{m}\mathrm{S}$. Calculate R_i , R_o and $\frac{v_o}{v_s}$.

ANSWERS:

 $V_{CC} = 25.101\,\mathrm{V}, \mathrm{R}_1 = 8.822\,\mathrm{K}, \mathrm{R}_2 = 6.609\,\mathrm{K}$

How would the answers be affected for the following circuit

ANSWERS:

 $R_i = 3.671 \,\mathrm{K}, R_o = 3.654 \,\mathrm{K}, \frac{v_o}{v_s} = -41.499$

Problem 4

The applied signal is very small. Calculate R_i and $\frac{v_o}{v_s}$ using the approximate equivalent circuit for the transistor. V_T and β are 30 mV and 199 respectively.

ANSWERS:

$$R_i = 1.875 \,\mathrm{K}, \frac{v_o}{v_s} = -64.194$$

Problem 5

The signal picture of a CE amplifier is as shown.

Find R_i , R_o and $\frac{v_o}{v_s}$ in terms of g_m , β and r_o . Find their limits when $\beta \to \infty$. The signal is small.

Problem 6

Assume in the figure shown that g_m is high enough to make the incremental voltage gain $\frac{v_o}{v_s}$ independent of the device. Assume all capacitors are large. Also assume that $aR\|(1-a)R\ll (1+\beta)R$. Take V_{EB} = 0.7 normally; $I_{EQ}R_e$ = 4.3V.

A gain of -4 is needed with the circuit being just capable of handling a maximum amplitude of 2V for the input sinusoid v_s . V_{ee} should be minimum possible for the specified $I_{EQ}R_E$. Calculate R_1 , R_e , V_{ee} and a.

Next remove the external load of 12K. What will the limiting swings possible for v_o on either side now? To what maximum amplitude will you have to restrict v_s if v_o is to be a full undistorted sine wave?

Problem 7

The input sine wave has $v_s=2.5\,\mathrm{V}$. To get an undistorted output within swing limits, calculate V_{CC} and R. Take V_{BE} nominal = 0.65V. Also calculate R_i for small signals given that $\beta=100$ and $V_T=25\,\mathrm{mV}$.

ANSWERS:

 $V_{CC} = 38.15 \,\mathrm{V}, R = 29.448 \,\mathrm{K}, R_{i} = 29.5 \,\Omega$

Problem 8

 V_{BE} = 0.65 V nominally. V_T = 25 mV. For small signals, find R_i and $\frac{v_o}{i}$. Assume β = 250.

ANSWERS:

$$R_i = 87.914 \,\Omega, \frac{v_o}{i_s} = -9445.43 \,\Omega$$

Problem 9

Assuming the signal to be very small calculate R_i , R_o and exact value of $\frac{v_o}{i_s}$. $\beta=200$ and $r_o=50$ K.

Problem 10

Take $V_T=25\,\mathrm{mV}$, $\beta=99$ and $V_{BE}=0.6$ nominally. Determine $\frac{v_o}{v_s}$, R_i , R_o and the output swing limits.

This configuration acts like a current controlled voltage source (low input and output impedance) when $g_m \to \infty$.

Answers:

$$v_{omax} = 4.4 \,\mathrm{V}, v_{omin} = -3.333 \,\mathrm{V}, R_i = 72.581 \Omega, R_o = 377.113 \Omega$$

Problem 11

Yet another configuration of a CE amplifier is a shown.

Calculate for small signals R_i , R_o and v_o/v_s . (This is just circuit analysis). Give the limits for R_i , R_o and the conditions to be atisfied to make gain independent of the device. When $g_m \to \infty$, what type of a controlled source does the amplifier act like?

Problem 12

The capacitances are very large. v_o , the output sinusoid, is to be linked with the input sinusoid by a device independent gain factor of 2, with a limiting amplitude of 8 V before clipping sets in. v_o should just begin to distort at both the extremes.

Find V_{CC} , V_{BB} and R_e . V_{BE} is 0.7 V, nominally. Given that $R_b \ll (\beta_{DC}+1)R_e$, comment on the stability of the transistor operating point - that is, compute the change in emitter current when the nominal V_{BE} changes by $\pm 0.1\,\mathrm{V}$ due to device variability and/or ambient temperature.

Now let $R_L \to \infty$. What are the limiting swings now possible for v_o on the either side? To what value will you restrict the amplitude of v_s to get an undistorted sinusoidal output?

ANSWERS:

$$V_{CC}$$
 = 32.7 V ; V_{BB} = 4.7 V ; R_e = 2 K. when $R_L\to\infty$: v_{omax} = 16 V, v_{omin} =-9.6 V, v_{smax} =2.4 V

Problem 13

Take V_{BE} = 0.6 V nominally. Use the approximate equivalent circuit with $\frac{\eta kT}{q}$ = 24 mV and α = 0.99. Calculate R_i

and R_o for small signals.

In the large signal case, if v_o is to be free of distortion determine the maximum possible positive and negative value of the input waveform.

ANSWERS:

 V_{smax} =2.11 V, v_{smin} =-4 V, R_i =251.5 K, R_o =8 K.

Problem 14

Design a circuit to get a gain of -2, independent of the device and free of distortion. V_{omax} = 10 V, with output being a sinusoid. The waveform of V_o hould just being to distort at both extremes. R_i should be in the range of 5 K, R_s is given to be 20Ω and R_L is 10K.

Problem 15

(Common Collector amplifier)

Calculate for small signals R_i , R_o and $\frac{v_o}{v_s}$. (Once again circuit analysis). Give the limits for R_i , R_o and the conditions to be satisfied to make gain independent of the device. What type of a controlled source does this amplifier act like when $g_m \to \infty$.

Problem 16

The transistor has very high β . With minimum possible V_{BB} and V_{CC} , the circuit should be able to handle the given drive of 5 V maximum amplitude. Calculate the values of V_{BB} and V_{CC} required.

When the 3 K lead is removed, determine the swing possible for v_o on either side, and the maximum amplitude to which v_s must now be restricted if v_o is to be a full undistorted sine wave. Take V_{BE} = 0.7 V, nominally. Assume all capacitances are large.

ANSWERS:

 $V_{CC}=35.7\,\mathrm{V}, V_{BB}=30.7\,\mathrm{V}, V_{omax}=5\,\mathrm{V}, V_{omin}=-15\,\mathrm{V}$ v_s can have an amplitude of 5 V.

Problem 17

For small signals calculate R_i , R_o and $\frac{v_o}{v_s}$. The device has equivalent small signal y-parameters as follows: $y_{11}=0.4\,\mathrm{mS}$, $y_{12}=0$, $y_{21}=40\,\mathrm{mS}$, $y_{22}=25\mu\mathrm{S}$ These parameters are with emitter as common terminal.

ANSWERS:

 R_L =194.881 K, R_o =44.015, $\frac{v_o}{v_s}$ =0.97714

Problem 18

 V_s is 6 V. Calculate the values of V_{CC} and V_{ee} which will give a v_o waveform with distortion just commencing at positive and negative extremes.

With the values found for V_{CC} and V_{ee} , use the approximate equivalent circuit for the transistor and determine R_i , R_o and v_o/v_s for small signals. Take $V_T = 25 \,\mathrm{mV}$, $\beta = 199.$

ANSWERS:

$$V_{CC}=6\,{\rm V}, V_{ee}=12.65\,{\rm V}, R_L=502.083\,{\rm K}, R_o=35.168, \frac{v_o}{v_s}=0.986$$

Problem 19

Calculate R_i and R_o ; the value of V_{CC} and V_{bb} which, with minimum input DC power to the stage, enable it to just handle the specified input drive without distortion in v_o . Calculate also the small signal $\frac{v_o}{v_s}$. Take V_{BE} = 0.7 V nominally, r_e = 20 Ω , α = 0.992 and V_S = 10V. In all cases, take the inductance and capacitors to be very large in value.

ANSWERS:

 $V_{CC} = 30 \text{ V}, V_{bb} = 20.7 \text{ V}, R_i = 627.5 \text{ K}, R_o = 99.01 \text{ Ohms}, \frac{v_o}{v_s} = 627.5 \text{ K}$ 0.9804

Problem 20

All the coupling capacitors are very large in value. Take $V_T = 25 \,\mathrm{mV}, \ \alpha = 0.99.$ Find for small signals R_i, R_{o1} as seen from the output terminal 1, R_{o2} as seen from output (COMMON BASE CONFIGURATION) terminal 2, v_{o1}/v_s and v_{o2}/v_s .

ANSWERS:

 R_i =64.375 K, R_{o2} =3 K, R_{o1} =43.39, $\frac{v_{o1}}{v_s}$ =0.9656, $\frac{v_{o2}}{v_s}$ =-1.1358

Problem 21

For very small signals, find v_o/v_s with the proper sign. Take $V_{BE} = 0.65 \text{ V}$, nominally, $V_T = 30 \text{ mV}$, $\alpha = 0.995 \text{ for all}$ transistors. Also determined which transistor controls the upper limit of swing and which the lower one.

ANSWERS:

 $\frac{v_o}{v}$ = 14609, T_5 controls lower swing limit - gets cut off when $v_o = -1.46 \,\mathrm{V}$ & T_4 controls upper swing limit - gets cut off when $v_o = 3.90 \,\mathrm{V}$

Problem 22

 $V_{BE} = 0.65 \text{ V}$ nominally. $V_T = 25 \text{ mV}$. Calculate R_i for small signals. Also find the positive and negative limits for v_o if it is to be free from distortion. Take β = 200, V_{CC} = 15.65 V.

ANSWERS:

 $R_i = 455.7 \text{ K}, V_{omax} = 4 \text{ V}, V_{omin} = -2.923 \text{ V}$

Problem 23

Figure 1: Circuit for Problem 21

Calculate for small signals R_i , R_o and v_o/v_s . Give the limits for R_i , R_o and the conditions to be satisfied to make v_o/v_s independent of device and free of distortion even for large signal case. What type of a controlled source does this amplifier act like when $g_m \to \infty$?

Problem 24

For the circuit shown below, let $R_s=R_e=4\,\mathrm{K}$, $R_C\|R_L=20\,\mathrm{K}$. Calculate i_o/i_s given that $h_{ib}=20\Omega$, $h_{rb}=10^{-4}$, $h_{fb}=-0.99$ and $1/h_{ob}=2\mathrm{M}\Omega$. Also, calculate R_i and R_o for the circuit. Finally, calculate i_o/i_s for the direct connection of the Norton equivalent and the load, without the transistor in between. Take $R_C=R_L$. To find R_o , take R_C to be part of load.

Problem 25

For small signals , find R_i and R_o , given that r_π = 2 K, β = 200, r_o = 30 K

ANSWERS:

 R_i = 13.206 Ohms, R_o = 3.364 M Ω

Problem 26

The input is a sine wave with V_S = 3.75V. To get an undistorted output sine wave within swing limits, Calculate V_{CC} and R.

If V_T = 25 mV, β = 200, r_o = 40 K, Calculate R_o . Take V_{BE} = 0.65 V nominally.

ANSWERS:

 $V_{CC} = 22.5\,\mathrm{V}, R = 4.233\,\mathrm{K}, R_o = 2.596\,\mathrm{M}$