ANALOG CIRCUITS : PROBLEM SET 4a

shanthi@ee.iitm.ac.in

Problem 1

For the transistor shown $\frac{\eta k T}{q}=40 \mathrm{mV}, \beta=99, V_{B E}=$ 0.65 V nominal. Find $V_{C E Q}, R_{i}, R_{O}, A_{v}$ and the incremental power gain. Assume $v_{L}=(1 \mathrm{mV}) \sin \omega \mathrm{t}$.

ANSWERS:

$V_{C E Q}=4.65 \mathrm{~V}, R_{i}=2 \mathrm{~K}, R_{o}=4 \mathrm{~K}, A_{v}=$ -24.75, Power gain $=1225.125$

Problem 2

In the circuit shown, use $\alpha=0.995, V_{T}=25 \mathrm{mV} . V_{C E Q}$ must be 5 V and R_{i} - the resistance presented by the circuit to the driving region v_{s} must be 1.5 K . Use $V_{B E}=0.7 \mathrm{~V}$ nominally. Calculate $V_{C C}, R_{1} \& R_{2}$ to get a small signal gain of -200.

Problem 3

The input signal is small. A more comprehensive linear small-signal incremental equivalent circuit for the transistor is given in the form show below, where $r_{1}, r_{2}, r_{3}, g_{m}$ are $4 \mathrm{~K} \Omega, 8 \mathrm{M} \Omega, 100 \mathrm{~K} \Omega \& 50 \mathrm{mS}$. Calculate R_{i}, R_{o} and $\frac{v_{o}}{v_{s}}$.

ANSWERS :

$V_{C C}=25.101 \mathrm{~V}, \mathrm{R}_{1}=8.822 \mathrm{~K}, \mathrm{R}_{2}=6.609 \mathrm{~K}$
How would the answers be affected for the following circuit

ANSWERS :

$R_{i}=3.671 \mathrm{~K}, R_{o}=3.654 \mathrm{~K}, \frac{v_{o}}{v_{s}}=-41.499$

Problem 4

The applied signal is very small. Calculate R_{i} and $\frac{v_{o}}{v_{s}}$ using the approximate equivalent circuit for the transistor. V_{T} and β are 30 mV and 199 respectively.

ANSWERS :

$R_{i}=1.875 \mathrm{~K}, \frac{v_{o}}{v_{s}}=-64.194$

Problem 5

The signal picture of a CE amplifier is as shown.

Find R_{i}, R_{o} and $\frac{v_{o}}{v_{s}}$ in terms of g_{m}, β and r_{o}. Find their limits when $\beta \rightarrow \infty$. The signal is small.

Problem 6

Assume in the figure shown that g_{m} is high enough to make the incremental voltage gain $\frac{v_{o}}{v_{s}}$ independent of the device. Assume all capacitors are large. Also assume that $a R \|(1-a) R \ll(1+\beta) R$. Take $V_{E B}=0.7$ normally; $I_{E Q} R_{e}$ $=4.3 \mathrm{~V}$.
A gain of -4 is needed with the circuit being just capable of handling a maximum amplitude of 2 V for the input sinusoid v_{s}. $V_{e e}$ should be minimum possible for the specified $I_{E Q} R_{E}$. Calculate $R_{1}, R_{e}, V_{e e}$ and a.
Next remove the external load of 12 K . What will the limiting swings possible for v_{o} on either side now ? To what maximum amplitude will you have to restrict v_{s} if v_{o} is to be a full undistorted sine wave?

Problem 7

The input sine wave has $v_{s}=2.5 \mathrm{~V}$. To get an undistorted output within swing limits, calculate $V_{C C}$ and R. Take $V_{B E}$ nominal $=0.65 \mathrm{~V}$. Also calculate R_{i} for small signals given that $\beta=100$ and $V_{T}=25 \mathrm{mV}$.

ANSWERS :
$V_{C C}=38.15 \mathrm{~V}, \mathrm{R}=29.448 \mathrm{~K}, \mathrm{R}_{\mathrm{i}}=29.5 \Omega$

Problem 8

$V_{B E}=0.65 \mathrm{~V}$ nominally. $V_{T}=25 \mathrm{mV}$. For small signals, find R_{i} and $\frac{v_{o}}{i_{s}}$. Assume $\beta=250$.

ANSWERS :

$R_{i}=87.914 \Omega, \frac{v_{o}}{i_{s}}=-9445.43 \Omega$

Problem 9

Assuming the signal to be very small calculate R_{i}, R_{o} and exact value of $\frac{v_{o}}{i_{s}} . \beta=200$ and $r_{o}=50 \mathrm{~K}$.

Problem 10

Take $V_{T}=25 \mathrm{mV}, \beta=99$ and $V_{B E}=0.6$ nominally. Determine $\frac{v_{o}}{v_{s}}, R_{i}, R_{o}$ and the output swing limits.

This configuration acts like a current controlled voltage source (low input and output impedance) when $g_{m} \rightarrow$ ∞.

Answers:

$v_{\text {omax }}=4.4 \mathrm{~V}, v_{\text {omin }}=-3.333 \mathrm{~V}, R_{i}=72.581 \Omega, R_{o}=$ 377.113Ω

Problem 11

Yet another configuration of a CE amplifier is a shown.

Calculate for small signals R_{i}, R_{o} and v_{o} / v_{s}. (This is just circuit analysis). Give the limits for R_{i}, R_{o} and the conditions to be atisfied to make gain independent of the device. When $g_{m} \rightarrow \infty$, what type of a controlled source does the amplifier act like ?

Problem 12

The capacitances are very large. v_{o}, the output sinusoid, is to be linked with the input sinusoid by a device independent gain factor of 2 , with a limiting amplitude of 8 V before clipping sets in. v_{o} should just begin to distort at both the extremes.

Find $V_{C C}, V_{B B}$ and $R_{e} . \quad V_{B E}$ is 0.7 V , nominally. Given that $R_{b} \ll\left(\beta_{D C}+1\right) R_{e}$, comment on the stability of the transistor operating point - that is, compute the change in emitter current when the nominal $V_{B E}$ changes by $\pm 0.1 \mathrm{~V}$ due to device variability and/or ambient temperature.

Now let $R_{L} \rightarrow \infty$. What are the limiting swings now possible for v_{o} on the either side? To what value will you restrict the amplitude of v_{s} to get an undistorted sinusoidal output?

ANSWERS :

$V_{C C}=32.7 \mathrm{~V} ; V_{B B}=4.7 \mathrm{~V} ; R_{e}=2 \mathrm{~K}$. when $R_{L} \rightarrow \infty:$
$v_{\text {omax }}=16 \mathrm{~V}, v_{\text {omin }}=-9.6 \mathrm{~V}, v_{\text {smax }}=2.4 \mathrm{~V}$

Problem 13

Take $V_{B E}=0.6 \mathrm{~V}$ nominally. Use the approximate equivalent circuit with $\frac{\eta k T}{q}=24 \mathrm{mV}$ and $\alpha=0.99$. Calculate R_{i}
and R_{o} for small signals.

In the large signal case, if v_{o} is to be free of distortion determine the maximum possible positive and negative value of the input waveform.

ANSWERS :

$V_{\text {smax }}=2.11 \mathrm{~V}, v_{\text {smin }}=-4 \mathrm{~V}, R_{i}=251.5 \mathrm{~K}, R_{o}=8 \mathrm{~K}$.

Problem 14

Design a circuit to get a gain of -2 , independent of the device and free of distortion. $V_{\text {omax }}=10 \mathrm{~V}$, with output being a sinusoid. The waveform of V_{o} hould just being to distort at both extremes. R_{i} should be in the range of $5 \mathrm{~K}, R_{s}$ is given to be 20Ω and R_{L} is 10 K .

Problem 15

(Common Collector amplifier)

Calculate for small signals R_{i}, R_{o} and $\frac{v_{o}}{v_{s}}$. (Once again circuit analysis). Give the limits for R_{i}, R_{o}^{s} and the conditions to be satisfied to make gain independent of the device. What type of a controlled source does this amplifier act like when $g_{m} \rightarrow \infty$.

Problem 16

The transistor has very high β. With minimum possible $V_{B B}$ and $V_{C C}$, the circuit should be able to handle the given drive of 5 V maximum amplitude. Calculate the values of $V_{B B}$ and $V_{C C}$ required.

When the 3 K lead is removed, determine the swing possible for v_{o} on either side, and the maximum amplitude to which v_{s} must now be restricted if v_{o} is to be a full undistorted sine wave. Take $V_{B E}=0.7 \mathrm{~V}$, nominally. Assume all capacitances are large.

ANSWERS :

$V_{C C}=35.7 \mathrm{~V}, V_{B B}=30.7 \mathrm{~V}, V_{\text {omax }}=5 \mathrm{~V}, V_{\text {omin }}=-15 \mathrm{~V}$ v_{s} can have an amplitude of 5 V .

Problem 17

For small signals calculate R_{i}, R_{o} and $\frac{v_{o}}{v_{s}}$. The device has equivalent small signal y-parameters as follows :
$y_{11}=0.4 \mathrm{mS}, y_{12}=0, y_{21}=40 \mathrm{mS}, y_{22}=25 \mu \mathrm{~S}$
These parameters are with emitter as common terminal.

ANSWERS :

$R_{L}=194.881 \mathrm{~K}, R_{o}=44.015, \frac{v_{o}}{v_{s}}=0.97714$

Problem 18

V_{s} is 6 V . Calculate the values of $V_{C C}$ and $V_{e e}$ which will give a v_{o} waveform with distortion just commencing at positive and negative extremes.

With the values found for $V_{C C}$ and $V_{e e}$, use the approximate equivalent circuit for the transistor and determine R_{i}, R_{o} and v_{o} / v_{s} for small signals. Take $V_{T}=25 \mathrm{mV}$, $\beta=199$.

ANSWERS :

$V_{C C}=6 \mathrm{~V}, V_{e e}=12.65 \mathrm{~V}, R_{L}=502.083 \mathrm{~K}, R_{o}=$ $35.168, \frac{v_{o}}{v_{s}}=0.986$

Problem 19

Calculate R_{i} and R_{o}; the value of $V_{C C}$ and $V_{b b}$ which, with minimum input DC power to the stage, enable it to just handle the specified inout drive without distortion in v_{o}. Calculate also the small signal $\frac{v_{o}}{v_{s}}$. Take $V_{B E}=0.7 \mathrm{~V}$ nominally, $r_{e}=20 \Omega, \alpha=0.992$ and $V_{S}=10 \mathrm{~V}$. In all cases, take the inductance and capacitors to be very large in value.

ANSWERS :

$V_{C C}=30 \mathrm{~V}, V_{b b}=20.7 \mathrm{~V}, R_{i}=627.5 \mathrm{~K}, R_{o}=99.01 \mathrm{Ohms}, \frac{v_{o}}{v_{s}}=$ 0.9804

Problem 20

All the coupling capacitors are very large in value. Take $V_{T}=25 \mathrm{mV}, \alpha=0.99$. Find for small signals $R_{i}, R_{o 1}$ as seen from the output terminal $1, R_{o 2}$ as seen from output terminal $2, v_{o 1} / v_{s}$ and $v_{o 2} / v_{s}$.

ANSWERS :

$R_{i}=64.375 \mathrm{~K}, R_{o 2}=3 \mathrm{~K}, R_{o 1}=43.39, \frac{v_{o 1}}{v_{s}}=0.9656, \frac{v_{o 2}}{v_{s}}=-1.1358$

Problem 21

For very small signals, find v_{o} / v_{s} with the proper sign. Take $V_{B E}=0.65 \mathrm{~V}$, nominally, $V_{T}=30 \mathrm{mV}, \alpha=0.995$ for all transistors. Also determined which transistor controls the upper limit of swing and which the lower one.

ANSWERS :

$\frac{v_{o}}{v_{s}}=14609, T_{5}$ controls lower swing limit - gets cut off when $v_{o}=-1.46 \mathrm{~V} \& T_{4}$ controls upper swing limit - gets cut off when $v_{o}=3.90 \mathrm{~V}$

Problem 22

$V_{B E}=0.65 \mathrm{~V}$ nominally. $V_{T}=25 \mathrm{mV}$. Calculate R_{i} for small signals. Also find the positive and negative limits for v_{o} if it is to be free from distortion. Take $\beta=200, V_{C C}=15.65 \mathrm{~V}$.

ANSWERS :

$R_{i}=455.7 \mathrm{~K}, V_{\text {omax }}=4 \mathrm{~V}, V_{\text {omin }}=-2.923 \mathrm{~V}$

Problem 23

(COMMON BASE CONFIGURATION)

Figure 1: Circuit for Problem 21

Calculate for small signals R_{i}, R_{o} and v_{o} / v_{s}. Give the limits for R_{i}, R_{o} and the conditions to be satisfied to make v_{o} / v_{s} independent of device and free of distortion even for large signal case. What type of a controlled source does this amplifier act like when $g_{m} \rightarrow \infty$?

Problem 24

For the circuit shown below, let $R_{s}=R_{e}=4 \mathrm{~K}, R_{C} \| R_{L}=$ 20 K . Calculate i_{o} / i_{s} given that $h_{i b}=20 \Omega, h_{r b}=10^{-4}, h_{f b}=$ -0.99 and $1 / h_{o b}=2 \mathrm{M} \Omega$. Also, calculate R_{i} and R_{o} for the circuit. Finally, calculate i_{o} / i_{s} for the direct connection of the Norton equivalent and the load, without the transistor in between. Take $R_{C}=R_{L}$. To find R_{o}, take R_{C} to be part of load.

Problem 25

For small signals, find R_{i} and R_{o}, given that $r_{\pi}=2 \mathrm{~K}, \beta=$ $200, r_{o}=30 \mathrm{~K}$

ANSWERS :

$R_{i}=13.206 \mathrm{Ohms}, R_{o}=3.364 \mathrm{M} \Omega$

Problem 26

The input is a sine wave with $V_{S}=3.75 \mathrm{~V}$. To get an undistorted output sine wave within swing limits, Calculate $V_{C C}$ and R .

If $V_{T}=25 \mathrm{mV}, \beta=200, r_{o}=40 \mathrm{~K}$, Calculate R_{o}. Take $V_{B E}=0.65 \mathrm{~V}$ nominally.

ANSWERS :

$V_{C C}=22.5 \mathrm{~V}, R=4.233 \mathrm{~K}, R_{o}=2.596 \mathrm{M}$

