Quantification of Uncertainty in Radar Backscatter Due to Variable Soil Moisture

Uday Khankhoje

Assistant Professor, Electrical Engineering Indian Institute of Technology Madras

PIERS Singapore, 20 Nov '17

Objectives of this talk are:

- Describe a new, efficient method of computing radar backscatter from random rough surfaces using FEM
- Quantify the uncertainty in radar backscatter due to variability in soil moisture

Usage scenario

- A fieldwork campaign in support of a SAR mission measures soil moisture
- to calibrate inversion models. How accurate must these measurements be?

Objectives of this talk are:

- Describe a new, efficient method of computing radar backscatter from random rough surfaces using FEM
- Quantify the uncertainty in radar backscatter due to variability in soil moisture

Usage scenario

A fieldwork campaign in support of a SAR mission measures soil moisture

to calibrate inversion models. How accurate must these measurements be?

Objectives of this talk are:

- Describe a new, efficient method of computing radar backscatter from random rough surfaces using FEM
- Quantify the uncertainty in radar backscatter due to variability in soil moisture

Usage scenario

A fieldwork campaign in support of a SAR mission measures soil moisture

to calibrate inversion models. How accurate must these measurements be?

Computing backscatter by Monte Carlo

- Surface is modelled as a stochastic process (gaussian/exponential correlation functions used).
 Parameters¹ rms roughness kh, correlation length kl
- To simulate what the radar observes, multiple computations on multiple surface instances needed & ensemble average
- Observe to the second end of the second end o

i.e. 19 out of 20 ensemble averages will bracket true mean within 1 dB

 $^{^{1}}k = 2\pi/\lambda$, where λ is radar wavelength

Computing backscatter by Monte Carlo

- Surface is modelled as a stochastic process
 (gaussian/exponential correlation functions used).
 Parameters¹ rms roughness kh, correlation length kl
- To simulate what the radar observes, multiple computations on multiple surface instances needed & ensemble average
- How much is good enough? Specify: confidence level (CL) & confidence interval (CI) to estimate statistical significance
 e.g. CI = 1 dB at CL = 95%

i.e. 19 out of 20 ensemble averages will bracket true mean within 1 dB

 $^{^{1}}k = 2\pi/\lambda$, where λ is radar wavelength

Random surface description

Traditionally: Filter a sequence of random points by the F.T. of the correlation function²

② Instead: Kosambi-Karhunen-Loeve (KL) expansion³ is widely used to represent random processes: $s(x, \theta) = s_0(x) + \sum_{k=1}^{\infty} \sqrt{\eta_k} f_k(x) z_k(\theta)$

• $s_0(x)$ is the mean of the random process

- η, f solve this eigenvalue problem: $\int C(i, j) f_k(j) dj = \eta_k f_k(i)$ where $C(i, j) = \operatorname{cov}(z_i, z_j)$ is the correlation between two RVs, z_i, z_j
- ▶ $z(\theta)$ represents mutually uncorrelated normal RVs ($\langle z_k \rangle = 0$)
- Expansion truncated to d terms in practice

²Thorsos, J. Acoust. Soc. Amer., 83(1), 1988

³M. Loeve, Probability Theory, 1977.

Uday Khankhoje (IIT Madras)

Random surface description

- Traditionally: Filter a sequence of random points by the F.T. of the correlation function²
- **2** Instead: Kosambi-Karhunen-Loeve (KL) expansion³ is widely used to represent random processes: $s(x, \theta) = s_0(x) + \sum_{k=1}^{\infty} \sqrt{\eta_k} f_k(x) z_k(\theta)$
 - ▶ s₀(x) is the mean of the random process
 - η, f solve this eigenvalue problem: $\int C(i, j) f_k(j) dj = \eta_k f_k(i)$ where $C(i, j) = \operatorname{cov}(z_i, z_j)$ is the correlation between two RVs, z_i, z_j
 - $z(\theta)$ represents mutually uncorrelated normal RVs ($\langle z_k
 angle = 0$)
 - \blacktriangleright Expansion truncated to d terms in practice

3 / 11

²Thorsos, J. Acoust. Soc. Amer., 83(1), 1988

³M. Loeve, Probability Theory, 1977.

Random surface description : applied to FEM mesh

- KL expansion: $s(x,\theta) = s_0(x) + \sum_{k=1}^d \sqrt{\eta_k} f_k(x) z_k(\theta)$
- Discretize this to get a sequence of points:

• Apply to whole mesh:

Handle the rough surface intelligently⁴

Partition the domain into parts that move & those that don't

• Move each node smoothly within 'sandwich' region: $y \rightarrow y + \Delta y$

$$\Delta y = \begin{cases} s(x)(\frac{h_t - y}{h_t}), \ 0 < y < h_t \\ s(x)(\frac{y + h_b}{h_b}), -h_b < y < 0 \end{cases}$$

- CD will deform to rough surface
- Zero deformation by the time $y = h_t$ or $y = -h_b$

⁴Khankhoje et al. , 'Stochastic solutions to rough surface scattering using the finite element method', IEEE TAP 65(8), 2017

Uday Khankhoje (IIT Madras)

Handle the rough surface intelligently⁴

Partition the domain into parts that move & those that don't

• Move each node smoothly within 'sandwich' region: $y \rightarrow y + \Delta y$

$$\Delta y = \begin{cases} s(x)(\frac{h_t-y}{h_t}), \ 0 < y < h_t \\ s(x)(\frac{y+h_b}{h_b}), -h_b < y < 0 \end{cases}$$

- CD will deform to rough surface
- Zero deformation by the time $y = h_t$ or $y = -h_b$

 4 Khankhoje et al. , 'Stochastic solutions to rough surface scattering using the finite element method', IEEE TAP 65(8), 2017

Uday Khankhoje (IIT Madras)

Motivations of this study

- In fieldwork campaign, soil moisture measured at few locations
- One of the set of

Earlier we wrote $\sigma = \sum_{i=1}^{n} \frac{1}{n} \sigma_i(z_1^{(i)}, z_2^{(i)}, \dots, z_d^{(i)}, mv_o)$ Now: make mv stochastic, e.g. normal distr. $mv = \mathcal{N}(mv_o, \Delta mv)$ and compute $\bar{\sigma} = \sum_{i=1}^{n'} \frac{1}{n'} \sigma_i(z_1^{(i)}, z_2^{(i)}, \dots, z_d^{(i)}, mv^{(i)})$

- Ask: How are σ , $\bar{\sigma}$ related as a function of Δmv ?
- How does it depend on the values of kh, kl, mv_o ?

Motivations of this study

- In fieldwork campaign, soil moisture measured at few locations
- One of the set of

Earlier we wrote $\sigma = \sum_{i=1}^{n} \frac{1}{n} \sigma_i(z_1^{(i)}, z_2^{(i)}, \dots, z_d^{(i)}, mv_o)$ Now: make mv stochastic, e.g. normal distr. $mv = \mathcal{N}(mv_o, \Delta mv)$ and compute $\bar{\sigma} = \sum_{i=1}^{n'} \frac{1}{n'} \sigma_i(z_1^{(i)}, z_2^{(i)}, \dots, z_d^{(i)}, mv^{(i)})$

• Ask: How are σ , $\bar{\sigma}$ related as a function of Δmv ?

• How does it depend on the values of kh, kl, mv_o ?

Motivations of this study

- In fieldwork campaign, soil moisture measured at few locations
- One of the set of

Earlier we wrote $\sigma = \sum_{i=1}^{n} \frac{1}{n} \sigma_i(z_1^{(i)}, z_2^{(i)}, \dots, z_d^{(i)}, mv_o)$ Now: make mv stochastic, e.g. normal distr. $mv = \mathcal{N}(mv_o, \Delta mv)$ and compute $\bar{\sigma} = \sum_{i=1}^{n'} \frac{1}{n'} \sigma_i(z_1^{(i)}, z_2^{(i)}, \dots, z_d^{(i)}, mv^{(i)})$

- Ask: How are σ , $\bar{\sigma}$ related as a function of Δmv ?
- How does it depend on the values of kh, kl, mvo?

Setup of numerical experiments

Strategy

Fix: $kh,\,l/h,\,mv_o,$ and see $\{\sigma,\bar{\sigma}\}$ for different Δmv

Combinations of following parameters were simulated:

kh	l/h	mv_o	•	$\Delta m v$
0.05	5	5		0
0.1	20	25		4
0.3	200	-		10

Note: *Entire* domain gets the same (random) value of soil moisture for one simulation

Covers a variety of roughness, correlation lengths, and soil moisture values. Fixed soil composition to {sand=0.51, clay=0.13, silt=0.36}, Hallikainen model⁵ to convert soil moisture to permittivity.

⁵Hallikainen et al. , IEEE TGRS 23(1), 1985

Results of numerical experiments – 1

kh = 0.3, l/h = 5				kh = 0.3, l/h = 20			
		0		\leftarrow HH \rightarrow		0	
	$\begin{vmatrix} \Delta mv \\ \downarrow mv \end{vmatrix}$	0	4	,	$\downarrow mv$	0	4
	5	-13.5	-14		5	-25.5	-25.3
	25	-10.2	-10		25	-21.8	-21.8
	$\Delta mv \rightarrow$	0	4	$\leftarrow VV \rightarrow$	$\Delta mv \rightarrow$	0	4
	$\downarrow mv$				$\downarrow mv$		
	5	-10	-10.2		5	-24.8	-24.8
	25	-3.87	-3.87		25	-19.9	-19.9

Recall that all results are within a CI of 1 dB at 95% CL

 \implies no statistical significance of backscatter variation for rough soils!

Uday Khankhoje (IIT Madras)

Soil moisture uncertainty quantification PIERS Singapore, 20 Nov '17 8 / 11

Results of numerical experiments – 2

kh = 0.1, l/h = 20				kh	kh = 0.05, l/h = 500			
ſ	$\Delta m v \rightarrow$	0	10	\rightarrow HH \rightarrow	$\Delta m v \rightarrow$	0	10	
	$\downarrow mv$			-	$\downarrow mv$			
	5	-22.1	-22.3		5	-26.2	-24.6	
	25	-18.2	-18.5		25	-22	-21.8	
	$\Delta mv \rightarrow$	0	10	$\leftarrow VV \rightarrow$	$\Delta mv \rightarrow$	0	10	
	$\downarrow mv$				$\downarrow mv$			
	5	-18.8	-19		5	-25.4	-24	
	25	-12.6	-13		25	-20.9	-20.4	

Recall that all results are within a CI of 1 dB at 95% CL

 \implies Tiny statistical significance to backscatter variation for smooth soils!

Uday Khankhoje (IIT Madras)

Soil moisture uncertainty quantification PIERS Singapore, 20 Nov '17

9 / 11

Inferences and implications -1

3 Random rough surface: $s(x, \theta) = s_0(x) + \sum_{k=1}^d \sqrt{\eta_k} f_k(x) z_k(\theta)$

ightarrow Large number (d>10) of random variables for characterization

- \rightarrow Surface randomness swamps out randomness in soil moisture
- ② Radar backscatter sensitive only to average soil moisture
 - ightarrow Sufficient to measure s.m. at a few points and average
 - $ightarrow \Delta mv$ not very significant, so ultra high accuracy not required

Inferences and implications -1

- **3** Random rough surface: $s(x, \theta) = s_0(x) + \sum_{k=1}^d \sqrt{\eta_k} f_k(x) z_k(\theta)$
 - ightarrow Large number (d>10) of random variables for characterization
 - \rightarrow Surface randomness swamps out randomness in soil moisture
- ② Radar backscatter sensitive only to average soil moisture
 - \rightarrow Sufficient to measure s.m. at a few points and average
 - $\rightarrow \Delta m v$ not very significant, so ultra high accuracy not required

Inferences and implications – 2

 Only possibility of statistical difference between σ and σ̄ is when surface is ultra smooth (i.e. small d or large l)

 \rightarrow Unlikely that s.m. is the physical QoI in such cases

Estimating s.m. from SAR doable if effect of roughness can be undone!

Interesting future extension: What is the impact on radar backscatter if soil moisture is spatially inhomogeneous?
 Much larger number of random variables → might compete better with rough surface random variables!
 BUT, computationally intense.

Inferences and implications – 2

 Only possibility of statistical difference between σ and σ̄ is when surface is ultra smooth (i.e. small d or large l)

 \rightarrow Unlikely that s.m. is the physical QoI in such cases

Estimating s.m. from SAR doable if effect of roughness can be undone!

Interesting future extension: What is the impact on radar backscatter if soil moisture is spatially inhomogeneous?
 Much larger number of random variables → might compete better with rough surface random variables!
 BUT, computationally intense.