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Abstract — We present an analytical model to com-
pute the field scattered from a cloud of finite rough
cylinders. The scheme presented in this paper allows
the calculation of the ensemble averaged covariance
matrix of the scattered field in terms of the corre-
lation function of the cylinder roughness and thus
obviates the need for a full-fledged monte-carlo sim-
ulation. Using our analytical model, we compare
the back-scattered polarisation response of a cloud
of rough cylinders to that of a cloud of smooth cylin-
ders – it is found that depending on the cylinder ra-
dius and orientation, the surface roughness can have
a significant impact on this response. The analyti-
cal model presented in this paper allows for an easy
and computationally efficient inclusion of cylinder
surface roughness into the existing forest models.

1 INTRODUCTION

Modelling the scattering properties of vegetation
patches and forest covers is important in the con-
text of remote-sensing since they are a signifi-
cant contributor to the radar cross-section. These
patches can often be modelled as an ensemble of
randomly oriented cylinders over a smooth or rough
surface. One of the major obstacles to develop-
ing a computationally efficient model is the statis-
tical variation in the properties of such scatterers –
the orientation of the cylinders is random and can
only be specified upto a probability distribution.
Moreover, the surface of such cylinders is typically
rough, with the roughness becoming significant at
high radar frequencies.
An exact computation of the scattering proper-

ties of such rough scatterers involves performing a
full Monte-carlo simulation – this becomes compu-
tationally intractable for realistic models. There
have been many attempts to approximately model
such scatterers – including treating the surface
roughness as a periodic corrugation over the smooth
cylinder [1] and modelling the scattered fields in
the geometric optics regime [2]. Perturbative meth-
ods have also been applied to analyzing electromag-
netic scattering from azimuthally rough conducting
cylinders [3, 4, 5] and cylinders with an impedance
boundary condition [6].
A three dimensional perturbative method for

computing the electromagnetic fields from an in-
finitely long homogenous rough cylinder has re-
cently been proposed [7]. This method enables the
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computation of the statistical averages of the scat-
tered electromagnetic fields and scattering cross-
sections in terms of the surface correlation func-
tion, thereby obviating the need to perform a full
Monte Carlo simulation. In this paper we extend
this method to approximately compute the elec-
tromagnetic fields from a finite rough-cylinder [8]
and a cloud of finite rough-cylinders. Using the de-
veloped model, we analyze the impact of surface
roughness on the scattering properties of a cloud
of finite rough cylinders and demarcate regimes for
the cylinder radius and orientation wherein the sur-
face roughness is of considerable effect and needs to
included in the scattered field calculations.
This paper is organised as follows – the analyt-

ical model is outlined in Section 2 and the impact
of surface roughness is numerically studied in Sec-
tion 3 to demarcate regimes wherein the cylindrical
scatterers can be approximated as smooth without
considerable loss of accuracy.

2 ANALYTICAL MODEL

The scatterer geometry is shown in Fig. 1.
Throughout this section, (r, φ, z) denote the coordi-
nates in cylindrical coordinate system and (ρ, θ, β)
denote the coordinates in the spherical coordinate
system. We also use two sets of coordinate axes
(Fig. 1a), x − y − z which is a fixed set of coor-
dinate axes and x′ − y′ − z′ which is a coordinate
axis with z′ parallel to the cylinder axis (directed
along (θc, βc) in the unprimed coordinates) and the
x′ − y′ axis chosen so as to ensure that the inci-
dent wave-vector kinc lies in the x

′− z′ plane at an
angle α′ from the z′ axis. Priming a coordinate is
understood to denote the latter coordinate system.
A time dependance of exp(−jωt) is assumed and
suppressed throughout this section. The incident
electromagnetic field is a plane wave with electric
field Einc:

Einc = E inc exp(jkinc · r)
= E inc exp[jk0(x

′ sinα′ + z′ cosα′)] (1)

where E = E inc
1 (ẑ

′ sinα′ − x̂′ cosα′) + E inc
2 ŷ′ is

the polarization of the transmitting antenna. The
cylinder is assumed to be azimuthally rough, with
roughness described by a stochastic process h(φ′)
which is the surface’s radial height over the mean
radius a. The length of the cylinder is denoted by L
and it is assumed that the cylinder is homogenous.
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Figure 1: Schematic of the scatterer geometry. (a) shows the orientation of the coordinate systems used
in the paper and (b) shows the effective surface ∂Γ used for computing the electromagnetic far field at
point P for a finite cylinder.

To compute the scattered fields at (ρ′, θ′, β′) (as-
sumed to be in the scatterer’s far field), we equiv-
alently compute the fields radiated by an effective
electrical current Jeff = n̂∂Γ×Hsca

∣∣
∂Γ
and magnetic

current Keff = Esca

∣∣
∂Γ

× n̂∂Γ at a plane surface
∂Γ (Fig. 1b), where (Esca,Hsca) are the scattered
electromagnetic fields and n̂∂Γ is the normal to ∂Γ.
Following the analysis done by Hulst [8] in his treat-
ment of a finite smooth cylinder, we approximate
the scattered fields on ∂Γ by the scattered fields for
an infinite rough cylinder multiplied by a rectangu-
lar window in z′:

(Esca,Hsca)
∣∣
∂Γ

≈ (E(∞)
sca ,H(∞)

sca )
∣∣
∂Γ

R(z′/L) (2)

where (E(∞)
sca ,H(∞)

sca ) are the scattered electromag-
netic fields from an infinitely long rough cylinder
and R(u) = 1 for |u| < 1/2 and 0 otherwise. Since
the cylinder is assumed to be only azimuthally
rough, the scattered fields have the following func-
tional form:

[
E(∞)

sca

H(∞)
sca

]
≈ F(r′, z′)

∑
p∈{h,v}
q∈{x,y,z}

q̂′E inc
p

[
Sq,p(φ

′)
Gq,p(φ

′)/η0

]

(3)

where F(r′, z′) = √
2 exp[j{k0(r′ sinα′+z′ cosα′)−

π/4}]/√πk0r′ sinα′ and Sq,p(φ
′), Gq,p(φ

′) ∀ q ∈
{x, y, z}, p ∈ {1, 2} govern the azimuthal depen-
dence of the electromagnetic fields and depend on

h(φ′) through:

[
Sq,p(φ

′)
Gq,p(φ

′)

]
=

[
S
(0)
q,p(φ′)

G
(0)
q,p(φ′)

]
+

∞∑
n=−∞

[
S
(1)
q,p;n(φ′)

Gq,p;n(φ
′)

]
hn+

∞∑
n=−∞

∞∑
m=−∞

[
S
(2)
q,p;n,m(φ′)

G
(2)
q,p;n,m(φ′)

]
hnhm (4)

where hn =
∫ 2π
0

h(φ′) exp(−jnφ′)dφ′/2π and their
coefficients can be computed from the perturbative
solution for an infinitely long cylinder [7] .

Computing the scattering fields (Esca,Hsca) now
simply involves computing the fields radiated by the
effective current densities (Jeff,Keff) [10]. Closed
form expressions for the scattered fields can be
obtained if (a) the azimuthal dependence in the
effective currents due to Sq,p(φ

′), Gq,p(φ
′) ∀ q ∈

{x, y, z}, p ∈ {1, 2} is ignored and they are approx-
imated by their values at the foot of perpendicular
on ∂Γ from the origin and (b) F(r′, z′) is approxi-
mated by a gaussian along ∂Γ. Using these approx-
imations we obtain the following expressions for the
scattered fields:

Esca
ρ′ = 0 (5a)

Esca
θ′ =

∑
p∈{h,v}

[
{Gx,p(β

′) sinβ′ −Gy,p(β
′) cosβ′}

× sin θ′ + Sz,p(β
′)
]
2V(ρ′, θ′)
sinα′

Ep (5b)
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Esca
β′ =

∑
p∈{h,v}

[
{Sx,p(β

′) sinβ′ − Sy,p(β
′) cosβ′}

× cos θ′ −Gz,p(β
′)
]
2V(ρ′, θ′)
sinα′

Ep (5c)

where:

V(ρ′, θ′) = jL exp(jk0ρ
′)

4πρ′
sinc

[
k0L

2
(cos θ′− cosα′)

]
(6)

Interpreting Esca
θ′ and Esca

β′ as the two orthogo-
nal components of the scattered electric field com-
ponents (Esca

1 ) and vertical (Esca
2 ) scattered com-

ponents respectively, it is easy to compute the
scattering matrix S defined via [Esca

1 , Esca
2 ]

T =
S(θ, β;kinc)[E inc

1 , E inc
2 ]

T in the unprimed coordi-
nates from Eq. 5 and by transforming the primed
to unprimed coordinates.
The quantity of interest while characterizing the

scattering properties of an ensemble of scatterers
(such as a cloud of rough cylinders) is the ensemble
average of the covariance matrix [9], which is de-
fined by C = [S11, S12, S21, S22]

†[S11, S12, S21, S22],
where Sij i, j ∈ {1, 2} are the elements of the scat-
tering matrix S. The covariance matrix has to
be averaged not only over the surface roughness
h(φ′) but also over the cylinder orientation (θc, βc).
In our calculations, we capture the randomness in
cylinder orientation through an explicit probabil-
ity distribution function p(θc, βc) over which the
covariance matrix is averaged. However, since the
scattering matrix is evaluated only upto second or-
der in h(φ′), the ensemble average of the covariance
matrix can be expressed entirely in terms of the
surface autocorrelation function R(Φ) = 〈h(φ′ +
Φ)h(φ′)〉 using 〈h∗nhm〉 = Rnδn,m and 〈hnhm〉 =
Rnδn,−m where Rn =

∫ 2π
0

R(Φ) exp(−jnΦ) dΦ/2π.

3 IMPACT OF SURFACE ROUGHNESS

To quantify the impact of surface roughness on the
scattering properties of a cloud of rough cylinders,
we compute the back-scattered power received in a
monostatic radar measurement. By comparing this
power with that obtained for a cloud of smooth
cylinder, we identify regimes in the cylinder radii
and orientation wherein it is important to include
surface roughness while analyzing the scattering
properties of such a system.
The statistics of the surface roughness is mod-

elled by a gaussian autocorrelation function:

R(Φ) = h2
0 exp(−a2Φ2/l2) ∀ Φ ∈ [−π, π) (7)

where h0 is the root-mean-square (RMS) surface
roughness and l is the correlation length. While

h0 governs the absolute magnitude of the surface
roughness, l is an estimate of the distance beyond
which roughness at two points on the surface be-
come uncorrelated. The perturbative solution is
approximately valid for h0 < 0.25a and l > 0.1a
[7] – in all our calculations, we assume h0 = 0.25a
and l = 0.1a so as to simulate the roughest sur-
face within the validity of the perturbative solution.
The randomness in the cylinder orientation is cap-
tured by the cosine-square distribution function:

p(θc, βc) =
1

2π

(cos θc)
2N∫ π

0
(cos θc)2N dθc

(8)

The index N governs the orientation of the cylin-
ders – for large N the cylinders are nearly vertically
oriented.

The back-scattered received power (Prec) can be
calculated using the stokes vectors corresponding to
the receiving and transmitting antennas and the en-
semble average of the covariance matrix [9]. Fig. 2
shows Prec as a function of the transmitting antenna
ellipticity angle χ and orientation angle ψ for both
copolarized and crosspolarized receiving antenna –
a significant deviation between the response of a
cloud of rough and smooth cylinders is observed.
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Figure 2: Variation of received power Prec (arbi-
trary units) with the transmitting antenna orienta-
tion ψ and ellipticity χ. In all simulations, a = 50
cm, L = 100 cm, λ0 = 23 cm, N = 10 and cylinder
dielectric constant εr = 20 + 7.0j.
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Figure 3: Variation of integrated deviation with
cylinder radius a and the index N . L = 100 cm
and cylinder dielectric constant εr = 20 + 7.0j is
assumed in all the simulations, N = 1 in (a) and
a = 50 cm in (b).

This difference can be quantified by computed
the integrated deviation δ:

δ =

∫ π
0
|Prec(ψ, χ = 0)− P

(0)
rec (ψ, χ = 0)|dψ∫ π

0
P

(0)
rec (ψ, χ = 0)dψ

(9)

where the P
(0)
rec is the back-scattered power received

from a cloud of smooth cylinders. Fig. 3a shows
the variation of the integrated deviation δ with
the cylinder radius and index N (which governs
the cylinder orientation). Clearly, the deviation in-
creases with an increase in the mean radius a at
the same radar wavelength – consequently, simu-
lation of the response of such a system to smaller
radar wavelenghts necessitates the need for includ-
ing surface roughness in the model. This is specially
important for radar scattering measurements with
S-band radars (λ0 ∼ 6 cm).
From Fig. 3b it can be seen that the impact of

surface roughness becomes more pronounced with
an increase in the randomness in the orientation
of the cylinders – it is therefore more important
to include cylinder roughness in the analysis of the
‘canopy’ layer rather than the ‘trunk layer’ (modulo
the radius of the cylinders in the two layers). It was
also found that the cylinder length has little impact
on δ and thus is not an important factor in deciding

whether or not to include surface roughness in the
simulation model.
In conclusion, the analytical model developed in

this paper allows for an efficient inclusion of sur-
face roughness in the existing forest models. The
approximate regimes demarcated in this paper are
expected to be useful guidelines for inclusion of sur-
face roughness while developing realistic models to
simulate radar scattering from forests and vegeta-
tion patches.
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