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Phase unwrapping of coarsely sampled maps using
higher-order methods
Bhargav Ghanekar∗, Uday K Khankhoje†

Abstract—We consider the problem of two dimen-
sional phase unwrapping – that of reconstructing the
absolute phase (up to a constant) given a noisy 2π-
wrapped phase map as input. In particular, we present
an algorithm that excels at unwrapping low resolution
phase maps, i.e. maps obtained by coarsely sampling
a field of view. Our key observation is that the mag-
nitudes of higher-order differences on phase maps are
typically much lower than corresponding first order
differences. We develop this insight into formulating
“higher order Itoh conditions”. Using this, we build an
optimization-based framework that leverages higher-
order information to estimate the first order derivatives
of the unwrapped phase with the aid of appropriate
total variation and irrotationality-based regularizers.
The first order derivatives are then integrated using
a minimum spanning tree approach to produce the
unwrapped phase map. We compare the performance
on synthetic terrain maps and real world data ob-
tained from interferometric synthetic aperture radar
with other contemporary algorithms to demonstrate
superior performance on key metrics such as absolute
error, feature similarity, and image sharpness for low
resolution phase maps.

I. Introduction
Phase unwrapping is a key technique at the heart of

many applications in remote sensing, cell imaging, and
magnetic resonance imaging, among other areas [1]. In
interferometric synthetic aperture radar (InSAR), two
SAR images are interfered to produce an image whose
phase contains information about the scene topography
[2], [3]; however, since the phase information is wrapped
modulo 2π, an unwrapping procedure is required in order
to obtain the terrain’s topography. Similarly, in the case of
cell imaging, the measured phase after wave propagation
through a sample is proportional to the optical path delay,
which indicates the extent of delay as compared to a
clear medium. Again, since the recorded phase values are
modulo 2π, a phase unwrapping problem needs to be
solved in order to accomplish cell imaging [4], [5].

The field of phase unwrapping is rich in techniques
developed over the last several decades [1]. It is beyond
the scope of this paper to give a comprehensive review
of all such techniques, but it suffices to broadly delin-
eate the main approaches (see [6] for an InSAR related
review). An idea at the core of most phase unwrapping
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techniques is that of continuity of the phase across a
scene; this implies a certain minimum sampling rate of the
imaged scene. Under these conditions, as formally codified
in the “Itoh” condition [7] (more on this in Sec. II-A),
the wrapped phase maps can be used to estimate the
derivatives of the unwrapped phase, which in turn can
be integrated to reveal the unwrapped phase. Of course,
the presence of system noise or abrupt changes in the
true unwrapped phase can lead to this condition being
violated. In such a case, one strategy has focused on
efficient path-following methods using ideas of branch cuts
[8], [9], or minimum spanning trees [10], [11] for phase
unwrapping. Yet another approach has been to formulate
the problem in an optimization framework; here the differ-
ence between gradients of the estimated unwrapped phase
map and that given by the Itoh condition are minimized
subject to appropriate regularization conditions [12]–[15].
Another set of methods are statistics based, which can fuse
apriori information about the imaged scene. For e.g., the
SNAPHU method proposed in [16] uses a statistics based
network flow model to obtain the most likely unwrapping
result. Another popular method in this category, PUMA,
treats the objective function of minimization as first-order
Markov random fields and computes phase unwrapping by
a sequence of max-flow/min-cut calculations [17]. Finally,
machine learning techniques have come up in recent years
[18]–[22], offering very promising results in terms of both
the speed and accuracy of phase unwrapping, but at the
cost of significant computational resources for training and
open questions about performance on data which is very
different from the training set.

Our work is rooted in the optimization approach and
addresses a class of problems previously not addressed
explicitly – namely that of phase unwrapping of low
resolution images. With the upcoming advent of drone
based InSAR systems [23], [24], it will be desirable to
have technological solutions for reducing the weight and
complexity of on-board hardware, and our work is a step in
that direction. Similarly, microscopy related applications
such as optical coherence tomography [25] and digital
holographic microscopy [26] also stand to benefit with
lower resolution imaging hardware amidst a push towards
building low cost microscopy solutions [27], [28].

The primary challenge with low resolution images is
that the Itoh condition gets violated due to abrupt or
large changes in phase across adjacent pixels. However,
the corresponding changes in higher order finite-differences
are lower, and estimating first order phase gradients from
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(a) Fine sampled terrain map (b) Histogram – fine map (c) Histogram – coarse map

Fig. 1: (a) A synthetic terrain map and (b,c) normalized histogram plots of first (∆1) and second (∆2) order gradient
magnitudes, respectively, on a simulated terrain map under two sampling cases (fine and coarse). The red vertical lines
indicate the limits ±π that are relevant to the Itoh conditions. The histogram width for ∆2 values is smaller than those
for ∆1 values, especially for the coarsely sampled case – motivating the use of higher order derivatives for unwrapping.

higher order differences opens the door to successfully pro-
cessing low resolution images (see Fig. 1 for a visual sum-
mary of this observation). We formulate higher order Itoh
conditions to capture this idea and further regularize the
objective function with sparsity based total variation and
irrotationality constraints. After identifying problematic
points in the reconstruction, we use a minimum spanning
tree approach to integrate the obtained phase gradients,
thus completing the task of phase unwrapping. We study
the working of our algorithm on high and low resolutions
images, with different noise levels. We compare our results
with techniques that only use first order methods as well
as with the popular PUMA algorithm mentioned earlier.

The layout of this paper is as follows. In Section II we
describe the higher order Itoh conditions, formulation of
the optimization problem, and the integration strategy.
In Section III we describe the numerical experiments
performed with synthetic and real-world data. Based on
these results, we summarize our findings in Section IV.
All our computer codes are available here: https://github.
com/shadowfax11/phase unwrap itvc.

II. Methods
In this Section, we detail some fundamental properties

with regards to signal wrapping, and then describe the
proposed unwrapping framework.

A. The Itoh condition and its higher order extensions
Given a sequence of N numbers, {xn}Nn=1, let its corre-

sponding wrapped sequence {wn}Nn=1 be expressed as:

wn = W [xn] = xn + 2πkn, kn ∈ Z, (1)

such that wn ∈ [−π, π), and W [.] denotes the wrapping
operator (modulo 2π operation). Let ∆1 denote the first
order difference operator s.t. ∆1(xn) = xn−xn−1. The Itoh
condition [7] relates a sequence to its wrapped version as
follows:

W [∆1(wn)] = ∆1(xn) (2)

provided the following condition is satisfied:
|∆1(xn)| < π, ∀n (3)

Thus, one can recover the original sequence {xn} from the
wrapped sequence {wn} by a simple summation that uses
the Itoh condition:

xk = x1 +
k∑
i=2

W [∆1(wi)], k ∈ [2, N ]. (4)

We also show that the Itoh condition can readily be
extended to higher order derivatives. We denote an m-
th order derivative operator by ∆m (obtained by a m-th
order finite difference operation), and note the following
Theorem.

Theorem 1: Given an input sequence of phase values,
{xn}, a wrapping operator W , and the corresponding
wrapped sequence, {wn}, then if the mth order difference
operator satisfies: |∆m(xn)| < π for all n, the following
result holds for m ≥ 1:

W (∆m(W (xn))) = W (∆m(wn)) = ∆m(xn) (5)
Proof: see Appendix A.

Thus, we state a higher order Itoh condition: Given a
wrapped sequence {wn}, we can recover {∆mxn} from
wn = W [xn] if |∆m(xn)| < π, and then subsequently
integrate to obtain xn (subject to a priori knowledge on
related integration constants). Henceforth, we will refer
to the wrapped versions of the derivatives of wrapped
phase map as “Itoh estimates”; thus W [∆1(wi)] is an Itoh
estimate, and W [∆2(wi)] is a second order Itoh estimate.
Thus, from Theorem 1, we can infer that for the case of
m = 2, we can recover the sequence {∆1(xn)} from the
wrapped sequence {W (∆2(wn)} using the second-order
Itoh estimates as follows:

∆1(xk) = ∆1(x1) +
k∑
i=2

W [∆2(wi)], k ∈ [2, N ]. (6)

https://github.com/shadowfax11/phase_unwrap_itvc
https://github.com/shadowfax11/phase_unwrap_itvc
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and subsequently recover the original sequence {xn} via
integration (provided we have information about the ab-
solute phase and gradient value of the initial unwrapping
point). Extensions of the higher order Itoh conditions to
2D signals are straightforward and considered in Appendix
B.

B. Key difference between fine and coarse maps
This higher order Itoh condition is a more relaxed

condition on xn compared to the first order condition
for most phase maps encountered in practice, and is
well appreciated by graphic histograms in Fig. 1. Here,
histograms of first and second order difference magnitudes
on a typical random rough terrain map are displayed. For
a finely sampled map, both the first and second order
difference magnitudes easily satisfy the respective Itoh
conditions.

Whereas, when considering coarsely sampled maps (ob-
tained by downsampling the fine maps by a factor of 4×
in each direction), it is evident that the number of points
where the first order Itoh condition is violated is much
more than the corresponding number the second order
condition. Thus, phase unwrapping undertaken with first
order derivatives on a coarsely sampled map is likely to
be more erroneous than when second order derivatives
are considered. This key observation informs the heart of
our approach: leverage higher order information for phase
unwrapping of coarsely sampled maps.

In fact, we can formally show that the higher order
Itoh condition is satisfied more frequently than a lower
order Itoh condition for reasonably smooth surfaces, as
quantified in the following Theorem.

Theorem 2: Given a sequence of k−order derivatives of
a surface, {g[n]}, and the k+ 1−order derivative sequence
as {h[n]}, then the following holds for reasonably smooth
surfaces:

If P (|g| > π) = C, then P (|h| > π) < C,

where P denotes probability.
Proof: See Appendix C.

C. Denoising and irrotationality considerations
The above discussions indicate that the Itoh estimates

are estimates of the derivatives of the true unwrapped
phase map, subject to certain bounds on magnitudes of the
derivatives. Thus in principle, we can obtain unwrapped
phase derivative estimates from the 1st and 2nd order
Itoh estimates, and then integrate them to obtain the
true unwrapped phase map. This idea, however, must be
tempered by the fact that input wrapped phase maps are
noise corrupted. Furthermore, the act of finite differencing
amplifies this noise [29]. As a result, the obtained 1st or
2nd order Itoh estimates will be noisier – more so for the
2nd order as compared to the 1st order Itoh estimates.

Therefore it is essential to denoise the obtained deriva-
tive estimates prior to integration. A popular approach
for denoising is to use total variation methods [30]–[32].

Fig. 2: Left: Phase map values, f (in multiples of 2π),
Right: Derivative (∆xf,∆yf) values. Every 2 × 2 loop
summation of gradients map must be zero.

These methods are suitable since they preserve jump dis-
continuities and suppress the noise induced by numerical
differentiation [29]. Indeed, performing 2D unwrapping
by denoising 1st order Itoh estimates by total variation
denoising has been performed successfully [14], [33]. In
our methods, we also adopt total variation methods (and
higher-order variants) for the purpose of denoising.

In the case of 2D signals, derivative denoising involves an
additional constraint that comes from the irrotationality
or integrability property of 2D surfaces [34]: any summa-
tion of the gradients across a loop of 2 × 2 pixels on the
map must be zero (See Fig. 2; the guiding principle is this –
for a scalar differentiable function f(x, y), whose gradient
is given by ∇f , the integral identity

∮
C
∇f · d~l = 0 holds

independent of the path chosen, C). If this condition is not
satisfied, the estimates are erroneous and the integration of
the x, y-derivative estimates will not be path-independent,
both of which are highly undesirable. We use the above
observations to regularize the derivative estimates in such
a way that while they are close to the Itoh estimates, they
also satisfy the irrotationality property.

D. Optimization problem formulation
We are now in a position to formally outline our novel

2D phase unwrapping algorithm, the central idea of which
is: Utilize second order Itoh estimates to correctly estimate
the first order phase map derivatives → the unwrapped
phase map estimate is then obtained by integrating the
x, y-derivatives over consistent gradients. This is done
iteratively over each residual map for a fixed number of
times to obtain the final estimated unwrapped phase map.

Given an input wrapped map b, possibly corrupted
by noise, we propose the following convex optimization
problem to implement the central idea:

f̂x, f̂y = argmin
f,g

ε1 ‖f− bf‖2
2 + ε2 ‖g− bg‖2

2

+ λ1TV(f) + λ2TV(g)

+ β1 ‖M1f‖1
1 + β2

∥∥∥∥[M2 0
0 M3

]
g
∥∥∥∥1

1

+ µ1 ‖∇f− g‖2
2 + µ2

∥∥gxy − gyx
∥∥2

2

(7)

where:
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• f =
[
fTx , fTy

]T and g =
[
gTxx,gTxy,gTyx,gTyy

]T re-
spectively correspond to concatenated vectors of the
vectorized versions of the first and second derivative
maps of the unwrapped phase map. Henceforth, all
variables indicated in bold correspond to flattened-
out column vectors of the corresponding 2D variable
(which are expressed in non-boldface font).

• bf ,bg correspond to stacked vectors of 1st and 2nd
order 2D Itoh estimates of input b given in Eqns. 16–
20 (See Appendix B). Thus, the first two terms,
weighted by hyperparameters ε1, ε2, correspond to a
“data fit” term in the cost function.

• TV(f) corresponds to the sum of the TV norms of
fx, fy, while TV(g) corresponds to the sum of the
TV norms of gxx, gyx, gxy, gyy; these terms act to
denoise the derivatives and are weighted by hyperpa-
rameters λ1, λ2, respectively.

• To check for irrotationality of derivative maps (say f̂x
and f̂y), one needs to ensure that at all points (i,j), a
2x2 loop summation equals zero, i.e.

f̂x(i, j) + f̂y(i, j + 1)− f̂x(i+ 1, j)− f̂y(i, j)

=⇒
[
1,−1, 1,−1

] 
f̂x(i, j)

f̂x(i+ 1, j)
f̂y(i, j + 1)

f̂y(i+ 1, j + 1)

 = 0

Such constraint equations can be written together in a
matrix format. Thus, M1,M2,M3 are sparse matrices,
with each row in the matrices having only 4 non-
zero elements (from the set {+1,−1}), corresponding
to a 2 × 2 loop summation at a point. Specifically,
M1,M2,M3 correspond to the irrotationality opera-
tor when used upon the stacked vectors

[
fTx , fTy

]T ,[
gTxx,gTxy

]T ,
[
gTyx,gTyy

]T respectively. Since we wish
all the derivative estimates to satisfy the irrotational-
ity constraints, these terms are weighted by hyper-
parameters β1, β2, respectively, and are introduced
by means of a 1−norm due to the observation that
violations of the irrotationality constraint tend to be
sparsely distributed.

• The final two terms account for consistency of deriva-
tives; the first one weighted by µ1 compares the
numerical second order derivatives with estimated
ones, and the second one weighted by µ2 promotes
the equality of mixed derivatives.

The objective function can be understood in the fol-
lowing way; the first two terms correspond to data consis-
tency, since the terms bf ,bg come from the input wrapped
map, the next two terms impose total variation regular-
ization, the two terms after that impose irrotationality
constraints, and the final two terms are derivative consis-
tency terms as already mentioned. Thus, Eq. 7 minimizes
an objective that satisfies all the above-mentioned require-
ments to return derivative estimates that are consistent,
and hence can be integrated over. The above minimization
problem is readily formulated and solved in an alternating

direction method of multipliers (ADMM) framework [35]
(see Appendix D for more details).

E. Intelligent integration of derivatives
While the previous subsection focused on estimating the

derivatives of the phase map, we now proceed to estimate
the unwrapped phase map, denoted by f̂ . This is obtained
by an integration of the solutions f̂x, f̂y, obtained from
solving Eq. 7, followed by converting them to 2D maps
from their vectorized versions. Instead of the usual x−,
y− raster scanning that is used for integration, we use a
different method inspired by [36], where the integration of
derivatives can be thought of a minimum spanning tree
(MST) problem, with each pixel as a node, and absolute
values of derivatives as edge weights. However, f̂x, f̂y may
still not be integrable at all pixels due to a violation of the
irrotationality constraint. Thus the procedure to obtain f̂
is outlined as follows:

1) Compute 2 × 2 loop summations of the derivative
estimates (f̂x, f̂y) at all points (also called “residues”
[8]), i.e.

f̂x(i, j) + f̂y(i, j + 1)− f̂x(i+ 1, j)− f̂y(i, j).

2) Points where this summation magnitude is greater
than a (small) fixed threshold ε are considered to
have inconsistent derivatives, and hence the associ-
ated 4 edges, i.e. : (i, j) → (i, j + 1), (i, j + 1) →
(i+1, j+1), (i+1, j+1)→ (i+1, j), (i+1, j)→ (i, j)
are removed from the integration routine.

3) Compute a minimum spanning tree with the remain-
ing nodes; this gives an integration path for the
derivative estimates.

4) In case a point is inaccessible (due to all asso-
ciated edges being removed) then no integration
value is assigned here. After integration involving the
other nodes is complete, the missing values are later
filled in by performing bilinear interpolation between
neighboring values.

The above idea of “masking” out nodes where irrotation-
ality does not hold is similar in essence to that of the use of
quality maps in InSAR phase unwrapping techniques [1];
here, the information of the signal magnitude (that can
accompany the wrapped phase information if recorded),
helps in marking low quality areas of a phase map that
should be masked out for the process of phase unwrapping;
many other metrics for generating quality maps are also
possible [37].

F. Iterative unwrapping of residual phase maps
The estimate obtained after solving Eq. 7 and per-

forming intelligent integration may still contain errors due
to noise. This can be readily checked by examining the
residual map, fres, defined as:

fres = W [W [f ]− f̂ ] (8)
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where W [f ] is the noisy wrapped input map, and f, f̂
correspond to the true and estimated phase maps, respec-
tively. If the unwrapping is perfect, there should be no
2π phase jumps in the residual map. These jumps can be
readily estimated by counting the number of pixels having
large magnitudes (nearly 2π) in the gradient maps of fres.
If the residual map does have significant 2π jumps, it
means that the unwrapping result is inaccurate. However,
one can continue to perform the unwrapping technique
on the residual map to obtain an unwrapped estimate of
the residual map, and add that to the initial unwrapped
estimate (as demonstrated in [14]). This insight suggests
that better estimates can be obtained by iterative unwrap-
ping of the residuals, and simply summing up all of those
estimates (See Appendix E for a detailed explanation).

G. Novel 2D phase unwrapping method summary

Fig. 3: Flowchart depicting the phase unwrapping proce-
dure

We summarize the entire phase unwrapping algorithm
in Fig. 3, which involves iterative unwrapping of residual
wrapped phase maps, with each iteration invoking Eq. (7)
to estimate the derivatives and using intelligent integration
as previously outlined. In order to better understand the
impact of adding second order information to our phase
unwrapping algorithm, we study and analyse the results of

the minimization problem in Eq. 7 for two separate cases1

1) ITV: ε2 = 0, µ1 = 0, µ2 = 0, λ2 = 0, β2 = 0
Here, we do not use any 2nd order information,
and instead work with the first order Itoh estimates
[38]. Additionally, for any 2D map h, total variation
regularization is implemented as a sum of a simple
anisotropic norm, given by:

‖Dxh‖1 + ‖Dyh‖1,

where Dx, Dy are first-order forward difference op-
erators in the x, y directions, respectively. The third
term in Eq. 7 thus becomes:

TV(f) = TV(
[
fTx , fTy

]T )
= (‖Dxfx‖1 + ‖Dyfx‖1) + (‖Dxfy‖1 + ‖Dyfy‖1).

2) ITVC: This case considers the minimization prob-
lem of Eq. 7 in its full, general sense with a combined
use of first and second order information; therefore
all hyperparameters are non-zero. TV regularization
creates piece-wise constant solutions, also known as
the staircase effect in image restoration. Since it is
desirable to estimate smoother solutions, we take
inspiration from [32] and make the third term in Eq.
7 be a higher-order anisotropic TV norm (instead of
a simple 1st order TV norm) given by:

‖Dxxh‖1 + ‖Dxyh‖1 + ‖Dyxh‖1 + ‖Dyyh‖1

where Dxx, Dxy, Dyx, Dyy are second-order forward
difference operators. The fourth term in Eq. 7 re-
mains a simple anisotropic TV norm.

In the next Section, we show numerical results pertain-
ing to these methods.

III. Results
A. Simulation experiments

To test the proposed methods, realistic synthetic ter-
rain data was generated 2. To test out claims about the
usability of the approaches in different sampling settings,
synthetic data maps were downsampled by a factor of 4×
(in each direction), thereby giving two types of maps -
finely sampled, and coarse sampled. Fig. 4 illustrates one
of the many synthetic maps generated, along with the
wrapped versions of the fine and coarse sampling scenarios.

Unwrapping procedures of ITV, and ITVC
were performed on the wrapped noisy versions of
these maps, for a maximum of 5 iterations, with
the hyperparameters (ε1, ε2, λ1, λ2, β1, β2, µ1, µ2)
being set to (1, 0, 1, 0, 1000, 0, 0, 0) for ITV and
(1, 1, 1, 1, 1000, 1000, 1, 1) for ITVC (the hyper-parameters
values are chosen empirically via a grid search). The

1The nomenclature of these methods arises by translating I as
irrotationality preserving, TV as total variation regularization, and
C as combined first and second order utilization.

2Tucker McClure (2021). Automatic Terrain Generation
https://www.mathworks.com/matlabcentral/fileexchange/
39559-automatic-terrain-generation, MATLAB Central
FileExchange.

https://www.mathworks.com/matlabcentral/fileexchange/39559-automatic-terrain-generation
https://www.mathworks.com/matlabcentral/fileexchange/39559-automatic-terrain-generation
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(a) Synthetic terrain map (absolute phase) of
256×256 pixels

(b) Wrapped map (fine sampled case, 256×256)

(c) Wrapped map (coarse sampled case, 64×64)

Fig. 4: Illustration of synthetic phase maps generated

threshold, NC , for the total number of 2π jumps
permissible in any residual map being set to 2% of the
total number of pixels, following the algorithm described
in the flowchart in Fig. 3. To consider the effects of noise,
Gaussian noise was added to the true unwrapped phase
maps prior to the wrapping operation, so as to simulate
noisy wrapped phase maps. Gaussian noise with standard
deviations equalling π/6 and π/4 were added to the
maps. To judge the quality of unwrapping, we used the
mean absolute error (MAE) as a metric, along with two
popular metrics to quantify image quality, namely the
Feature SIMilarity (FSIM) [39] and the Maximum Local
Variation (MLV) sharpness [40]. Judging the quality of

an image is difficult — particularly in relation to fine
structure detail — by the mean absolute error value.
Hence, looking at FSIM and MLV sharpness metrics
provides useful insight with regard to the unwrapping
quality. The implementations for FSIM and MLV metrics
were taken from the respective author code releases3. We
note an important distinction between the above metrics;
MAE and FSIM require knowledge of the reference image,
whereas MLV is reference free.

The unwrapping results of ITV, ITVC, were compared
alongside the PUMA unwrapping method [17]. The hyper-
parameter chosen for the implementation4 was the clique
potential exponent m = 1. The comparison was done in a
Monte Carlo fashion – 60 synthetic maps were generated
(both fine and coarse sampling) – and the ITV, ITVC,
and PUMA unwrappings were performed on each of these
maps. In the next Subsection, we present results averaged
over this set of experiments.

B. Results on synthetic terrains
We first report the ablation experiments performed to

study the impact of each of the two regularizing terms
(total variation and irrotationality), as well as the impact
of multiple iterations (we consider upto 5 in total). The
data fidelity and consistency terms are retained in all the
experiments (ε1 = ε2 = µ1 = µ2 = 1). These experiments
are: “Base” (i.e. λ1 = λ2 = β1 = β2 = 0), “TV-only” (i.e.
β1 = β2 = 0), “IRR-only (i.e. λ1 = λ2 = 0) and “Full”
(i.e. all hyper-parameters considered) and are detailed in
Table I. It is seen that: (i) irrotationality has a higher
impact compared to the total variation regularization, (ii)
iterative phase unwrapping is crucial in arriving at the best
solution, and (iii) using all the terms introduced in Eq. 7
is required for obtaining the best unwrapping results.

Ablation Experiment First iteration Final iteration
Base 16.4 rad 16.8 rad

TV-only 14.0 rad 13.0 rad
IRR-only 10.7 rad 6.8 rad

Full 10.7 rad 5.9 rad

TABLE I: Average MAE (radians) for unwrapping re-
sults for 60 different simulated wrapped maps (coarsely-
sampled, and with π/6 noise level)

We report the average percentage increase in FSIM,
MLV, and MAE values with respect to the ITV unwrapping
result. This helps us analyse the relative performance of
ITVC and PUMA with respect to ITV, and thus, helps in
comparing the performance of all the methods.

The first significant set of results are presented reporting
the average increase in using ITVC or PUMA over ITV
is summarized in Table II for low noise, and in Table

3FSIM taken from https://www4.comp.polyu.edu.hk/∼cslzhang/
IQA/FSIM/FSIM.htm, author L Zhang; MLV taken from
https://www.mathworks.com/matlabcentral/fileexchange/
49991-maximum-local-variation-mlv-code-for-sharpness-assessment-of-imag,
author Khosro Bahrami.

4The implementation was adapted from the publicly available
resource at: http://www.lx.it.pt/∼bioucas/code.htm

https://www4.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm
https://www4.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm
https://www.mathworks.com/matlabcentral/fileexchange/49991-maximum-local-variation-mlv-code-for-sharpness-assessment-of-imag
https://www.mathworks.com/matlabcentral/fileexchange/49991-maximum-local-variation-mlv-code-for-sharpness-assessment-of-imag
http://www.lx.it.pt/~bioucas/code.htm
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(a) Fine sampled case (256×256)

(b) Coarse sampled case (64×64)

Fig. 5: Noisy input wrapped maps used

III for higher noise. Since one wishes for lower error, a
negative increase (i.e. decrease) is desirable to the MAE
metric, while a higher, positive increase highlights better
performance in terms of FSIM and MLV metric. Note that
these are results obtained from the Monte Carlo averaging
over all datasets used.

To better appreciate the visual quality of unwrapping,
we present graphics of the unwrapping for one representa-
tive map in the dataset as seen in Figs. 5, 6, 7 for π/6-level
noise for both fine and coarse maps. Fig. 7 illustrates how
ITVC is superior at mapping structures as compared to
the PUMA result for coarse maps, while the performance
on fine maps is competitive. We also considered the case of
applying an iterative procedure to the PUMA algorithm.
We note that doing so leads to better phase unwrapping
(more so at lower noise), as compared to a one-shot
unwrapping. However, we note that despite this measure,
the proposed method still outperforms iterative PUMA for
all noise levels on coarsely sampled maps.

C. Real data experiments

To test the proposed methods on real world data, in-
terferometric synthetic aperture radar (InSAR) data [41]

Fine maps Coarse maps

ITVC PUMA ITVC PUMA

Avg. MAE increase 14% −42% −9% 12%

Avg. FSIM increase 0.58% 0.30% 2.0% 1.2%

Avg. MLV increase 2% −6% 18% 37%

TABLE II: Avg. metric increase w.r.t. the ITV unwrapping
result for π

6 noise case. For MAE - lower is better; for
FSIM/MLV - higher is better.

Fine maps Coarse maps

ITVC PUMA ITVC PUMA

Avg. MAE increase 10% −68% −3.9% 14.1%

Avg. FSIM increase 1.2% 1.5% 1.8% 0.85%

Avg. MLV increase 8.8% −1.7% 8% 57%

TABLE III: Avg. metric increase w.r.t. the ITV unwrap-
ping result for π

4 noise case. For MAE - lower is better; for
FSIM/MLV - higher is better.

Fig. 6: Unwrapping results on a finely sampled synthetic
terrain (π/6 noise)

from the Alaska Satellite Facility (ASF5) was used, and
a wrapped phase map located roughly over a location in
Hawaii was obtained. We consider two cropped terrain
maps derived from the above, which are overlapping ones.
The first is a cropped region downsampled by 8× (along
each axis) (see Fig. 8) with respect to the original map.
This downsampling still retains the fine structures of the
map, enough to consider the map as finely sampled. The
second is the same cropped region downsampled by 64×
(along each axis, see Fig. 9), to simulate a coarse wrapped
map. The two maps are overlapping and thus refer to the
same features on the ground. Unwrapping results can be
seen in Fig. 10 for all the three proposed methods.

5https://www.asf.alaska.edu/

https://www.asf.alaska.edu/
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Fig. 7: Unwrapping results on a coarsely sampled terrain
(π/6 noise)

Fig. 8: Real map #1. Cropped region of InSAR map,
downsampled by 8× (256×384 pixels) Source: [41]

Fig. 9: Real map #2. Cropped region of InSAR map,
downsampled by 64× (32×48 pixels) Source: [41]

IV. Conclusion
Based on our extensive numerical studies on both syn-

thetic and real-world data, we can summarize our results
and findings as follows.

On image quality and noise-related performance
1) From the simulation results on synthetic terrain

data, it is clear that ITVC performs better than the
ITV method in both FSIM and MLV sharpness met-
rics, for both noise levels, and for both the sampling
scenarios. Particularly for coarse sampling, ITVC
has better MAE, FSIM, and MLV performance, for
both noise levels. This can be justified as the ITV
method uses only first order TV regularization, and
hence the unwrappings are smoother and do not
capture fine structures, as is seen in Figs. 6-7.

2) The difference in unwrapping quality is more pro-
nounced for the low noise scenario, which can be
justified theoretically. It can be shown that a higher
noise level in the signal implies a higher noise in the
signal’s first order derivatives, and an even higher
noise in the second order derivatives. Thus, for
higher noise scenarios, there is a greater chance of
violation of the assumption for second order Itoh
estimates, compared to the first order Itoh esti-
mates’ assumption. This insight suggests a dimin-
ishing return for using higher order Itoh estimate
information, and is seen in our results as well – the
performance improvement seen with ITVC over ITV
is less for the π/4 noise level compared to the π/6
noise level case.

On unwrapping coarse v/s fine phase maps
1) Considering the synthetic terrain experiments, we

observe that for the fine sampling case, PUMA
outperforms ITV and ITVC as seen distinctly by
looking at the MAE metric, suggesting suitability
of PUMA for finely sampled phase maps. However,
for the coarse sampling case it is seen that ITVC is
clearly better suited in comparison to both ITV and
PUMA. Even though PUMA results how a higher
MLV, visual inspection shows that the ITVC result
is superior, and thus the enhanced sharpness index
is possibly due to a artificially jagged unwrapping
result.

2) For the InSAR experiments, we consider the unwrap-
ping of a fine and coarsely sampled wrapped phase
map of the same region. By a visual inspection of
the unwrapping, we assign the PUMA unwrapping
result for the finely sampled map as the reference.
The unwrapping results from the ITV and PUMA
procedures for the finely sampled map seem to be of
similar quality, while ITVC shows a few unwrapping
errors near the top edge of the map (see Boxes A in
Fig. 10).

3) In the case of the coarsely sampled map, ITVC
unwrapping show finer details and structures as com-
pared to ITV. The PUMA unwrapping result looks
noisier and less smooth. Certain small structures,
such as the depression at the bottom edge of the
map are missed in the PUMA result, while retained
in ITVC (see Boxes B in Fig. 10). Moreover, PUMA
unwrapping of the vertically aligned hill close to
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Fig. 10: Results on: finely sampled map (top row), coarsely sampled map (bottom row). The PUMA unwrapping
result (top-right) is considered as reference when comparing unwrapping results across the fine and coarse maps. With
that as reference, different boxes highlight the differences in unwrapping. Box A shows that ITVC has slight errors in
unwrapping in the fine sampled case. Whereas boxes B and C show that ITVC performs better that PUMA in the
coarse sampled case.

the bottom-right corner seems to be incorrect, while
ITVC and ITV unwrappings seem to have a similar
phase value compared to the reference (see Boxes C
in Fig. 10). This is in accordance with our simulation
results, which show that for coarse maps, ITVC has
a lower unwrapping error, and also better mapping
of structures compared to PUMA.

In closing, we remark that the overall philosophy of
the higher order Itoh conditions, i.e. unwrapping the n-
order derivatives according to the n+ 1-order derivatives,
can also be incorporated in traditional phase unwrapping
methods. Care must be taken to ensure that the con-
sistency relations mentioned below are respected while
unwrapping. These are (i) equality of the gradient of the
n-order derivative estimate with the n+1-order derivative
estimate, and (ii) equality of mixed higher order deriva-
tives; these are also the last two terms of the objective
function in our approach.

In summary, our proposed algorithm excels at phase
unwrapping on coarsely sampled phase maps as compared
to some of the contemporary algorithms considered, and
is thus a compelling candidate for an upcoming set of
applications that desire low resolution images.
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Appendix A
Proof for Theorem 1

Given a sequence xn and a wrapping operator W :

W (xn) = xn + 2πkn (kn ∈ Z) (9)

Thus,

W (∆m(wn)) = ∆m(wn) + 2πln (10)
W (∆m(wn)) = ∆m(xn) + 2π(∆m(kn) + ln) (11)
W (∆m(wn)) = ∆m(xn) + 2π(ln + ∆m(kn)) (12)

Note that W (∆m(wn)) ∈ [−π, π) and (ln + ∆m(kn)) ∈ Z.
Hence, if we have ∆m(xn) ∈ (−π, π), this implies that
(ln + ∆m(kn)) = 0, which implies that

W (∆m(wn)) = ∆m(xn). (13)

Appendix B
Higher order Itoh condition in 2D

In this Section, we provide details for the two-
dimensional (2D) extensions of the higher order Itoh
conditions [1]. Given a 2D signal, f ∈ RM×N , we define
derivative maps with the forward x, y difference operators
denoted by ∆xf ∈ RM×N−1 and ∆yf ∈ RM−1×N -

∆xf(i, j) = f(i, j + 1)− f(i, j) (14)
∆yf(i, j) = f(i+ 1, j)− f(i, j), (15)

where M,N denote the height and width of the signal,
respectively.

The 2D Itoh condition then states that:

W [∆xW [f ]] = ∆xf, if |∆xf | < π, (16)
W [∆yW [f ]] = ∆yf, if |∆yf | < π. (17)

This fact has been used in several works for the task of
2D phase unwrapping [13], [14].

Extending the above discussion towards higher order
Itoh conditions, specifically for m = 2, we note the
following consequences of Theorem 1 to 2D signals for a
phase map f :

W [∆xxW [f ]] = ∆xxf, if |∆xxf | < π, (18)
W [∆yyW [f ]] = ∆yyf, if |∆yyf | < π, (19)
W [∆xyW [f ]] = W [∆yxW [f ]] = ∆xyf = ∆yxf (20)

if |∆xyf | < π.

The proof for the above statement is trivial - one can apply
the one-dimensional higher order Itoh condition to each
direction x and y independently.

https://www.asf.alaska.edu/
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus
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Appendix C
Proof of Theorem 2

Let us define the higher order derivative sequence,
{h[n]}, in terms of the lower order derivative sequence (of
length N), {g[n]}, by means of a finite difference:

h[n] = g[n]− g[n− 1], 2 ≤ n ≤ N. (21)
We may treat g[n] as a random variable in general, but
g[n], g[n − 1] are not independent random variables since
the surface is expected to demonstrate spatial correlation
(this is our definition of “reasonably smooth”). Simplifying
the notation as z : h[n], x : g[n] and y : g[n−1], we seek the
probability distribution function (PDF) of z = x− y. For
this, we need the joint PDF, pxy, of correlated random
variables, x, y. Assuming both x, y can be modelled as
gaussian random variables of zero mean and variance σ2,
and with a correlation coefficient ρ, we get:

pxy(x, y) = exp
(
−x

2 + y2 − 2ρxy
2(1− ρ2)σ2

)
/
(

2πσ2
√

1− ρ2
)

(22)
Our empirical observations in the form of histograms in
Figs. 1(b,c) support the modelling of x, y as gaussian ran-
dom variables. From here, the cummulative distribution
function (CDF) of z, can be estimated by integrating
Eq. (22) over a region defined as D : {x, y|x − y < z}.
Next, we obtain the PDF of z by differentiating this CDF,
and find that z also has a gaussian PDF with zero mean
and variance σ2

z = σ2(2 − 2ρ). Thus, as long as adjacent
points on the terrain are correlated with a correlation
coefficient greater than 1

2 , we will have σz < σ. From here,
we compute our required probabilities as:

P (|x| > π) = 1−
∫ π

−π

exp[− x2

2σ2 ]
2πσ = 1− erf( π√

2σ
) = C,

(23)
and similarly,

P (|z| > π) = 1− erf( π√
2σz

) < C, (24)

where the final inequality follows due to the monotonic
increasing nature of the erf() function when σz < σ.

Appendix D
ADMM Formulation

In the following section, we outline the ADMM formula-
tion of the optimization problem given in Eq. 7. For sake
of brevity and simplicity, we will discuss the ITVC case
(ε1 = ε2 = 1), and with λ1 = λ2 = λ, β1 = β2 = β, and
µ1 = µ2 = µ.

Firstly we note that Eq. 7 can be expressed as -∥∥∥∥A [ f
g

]
− b̃

∥∥∥∥2

2
+ λ

∥∥∥∥B [ f
g

]∥∥∥∥1

1
(25)

where A,B are linear operators (matrices) and b̃ is a
vector, with

A =


I 0
0 I√
µ∇ −√µI
0

[
0 √

µI −√µI 0
]
 , b̃ =


bf
bg
0
0

 (26)

and

B =


FHTV 0

0 FTV
β
λM1 0

0 β
λ

[
M2 0
0 M3

]
 (27)

where FHTV is the stack of HTV operators to applied on
fx, fy; FTV is the stack of TV operators to be applied
on gxx, gxy, gyx, gyy; and M is the matrix depicting the
irrotationality operator.

Let
[
f g

]T = f̃. Thus, Eq. 7 can be written as

argmin
f,g

∥∥Af̃− b̃
∥∥2

2 + λ ‖z‖1
1 (28)

s.t. Bf̃− z = 0

The above expression is in the standard ADMM format
[35], and the corresponding updates for the primal vari-
ables f̃, z and the dual variable u are:

f̃k+1 = (ATA+ ρBTB)−1(b̃ +BT (ρzk − uk)) (29)
zk+1 = Sλ/ρ(Bf̃k+1 + uk/ρ) (30)
uk+1 = uk + ρ(Bf̃k+1 − zk+1) (31)

where S is the soft-thresholding operator. The matrices
A,B are sparse, thus allowing for fast and efficient com-
putations of the above updates.

Appendix E
Iterative unwrapping of residuals

Let W [] denote the wrapping operator. Let Unwrap(.)
be a function that unwraps a wrapped phase map W [f ]
(could be any method - ITV, ITVC, etc.). Let the first
estimate be f (1) = Unwrap(W [f ]), and let e(1) denote the
error between the true unwrapped map f and the estimate
(namely Unwrap(W [f ])). Let f

(1)
res = W [W [f ] − f (1)],

as per Eq. 8. We now proceed to show how addition of
unwrapped estimates of residuals obtained iteratively lead
to better estimation. We have

f = Unwrap(W [f ]) + e(1)

=⇒ f = f (1) + e(1)

=⇒ f = f (1) + Unwrap(W [e(1)]) + e(2)

=⇒ f = f (1) + Unwrap(W [f − f (1)]) + e(2)

=⇒ f = f (1) + Unwrap(W [W [f ]− f (1)]) + e(2)

=⇒ f = f (1) + Unwrap(f (1)
res) + e(2)

=⇒ f = f (1) + f (2) + e(2)

=⇒ f =
N∑
i=1

f (i) + e(N)

Therefore, one can obtain successively better estimates by
summing up the unwrapped estimates of each successive
residual (f (i)

res). This is highlighted by the last box in the
flowchart depicted in Fig. 3.


