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1 Basics of compressed sensing

1.1 Sparse Recovery

• Examples of sparse recovery problems

• Motivating applications

• How can sparsity be exploited?

- Number of measurements/tests

• Formal definitions: sparsity, approximate sparsity, measurement process, noise

1.2 Review of mathematical basics

• Vector spaces, Linear Transformations, Rank, Nullity

• Normed spaces, Lp-norms

- Sparse approximation of a vector

1.3 Compressive Sensing

• Linear measurement model

y = Ax

• Need to solve under-determined linear equations

• Formulating Compressive Sensing as an L0-minimization problem

min ‖x‖0

s.t. Ax = y (1)

• Equivalent conditions for unique recoverability

• Construction of A as a real valued Vandermonde matrix

- Why is this not a satisfactory solution? (Hint: stability with respect to
noise)

• Computational intractibility of L0-minimization

2 Basis Pursuit (L1 Minimization)

2.1 Motivation

In compressive sensing, we want to search for the sparsest vector consistent with the
measured data. The problem can be stated as L0 minimization.

minimize‖z‖0 subject to Az = y (P0)

Unfortunately, solving the L0 minimization (P0) problem can be shown to be NP-
hard. However, computationally efficient algorithms are well-developed to solve a
relaxed version of the problem. One of these algorithms is basis pursuit, which can
be stated as follows.

minimize‖z‖1 subject to Az = y (P1)

Fortunately, under certain conditions (e.g. null space property), solving P1 can give
us the same solutions as P0.

1
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2.2 Null Space Property

Definition 1. A matrix A ∈Cm×N is said to satisfy the null space property relative to
a set S⊂ [N] if

‖vS‖1 < ‖vS̄‖1 for all v ∈ kerA\{0} (1)

Theorem 2 (UR≡NSP). Given a matrix A ∈ Cm×N , every vector x ∈ CN supported
on a set S is the unique solution of (P1) with y = Ax if and only if A satisfies the null
space property relative to S.

Proof.

UR⇒NSP. Let us assume Supp(x) ⊆ S and argmin
z
‖z‖1 = x s.t. Az = Ax. Thus,

for any v ∈ ker(A)\{0}, the vector vS is the unique minimizer of ‖z‖1 subject
to Az = AvS. We have A(vS̄ + vS) = Av = 0, which implies A(−vS̄) = AvS and
−vS̄ 6= vS. Hence, ‖vS‖1 < ‖vS̄‖1.

UR⇐NSP. Let us assume the null space property relative to S holds. Then, suppose
Supp(x)⊆ S and z 6= x s.t. Az = Ax. Let v := x− z ∈ ker(A)\{0}. We have

‖x‖1 ≤ ‖x− zS‖1 +‖zS‖= ‖vS‖1 +‖zS‖1

< ‖vS̄‖1 +‖zS‖1 = ‖−zS̄‖1 +‖zS‖1 = ‖z‖1

3 Robustness and Stability

In practice, noise is added to the measurement vector, resulting in following the con-
vex optimization problem

minimize‖z‖1 subject to ‖Az−y‖ ≤ η (P1,η )

3.1 Robust null space property

Definition 3. A matrix A ∈ Cm×N is said to satisfy the robust null space property of
order s (with respect to L2 norm) with constants 0 < ρ < 1 and τ > 0 if, for any set

S⊂ [N] with card(S)≤ s,

‖vS‖1 < ρ ‖vS̄‖1 + τ ‖Av‖2 for all v ∈ CN (2)

Theorem 4. The matrix A satisfies the robust null space property relative to S if and
only if

‖z−x‖1 ≤
1+ρ

1−ρ
(‖z‖1−‖x‖1 +2‖xS̄‖1)+

2τ

1−ρ
‖A(z−x)‖2 (3)

for all vectors x, z ∈ CN .

3.2 Computational Efficiency

L1 minimization problem (which belongs to convex optimization problem) can solved
in polynomial time. In the noiseless case, L1 minimization can be written as a linear
program. Linear program can be shown to be solvable in polynomial time. In the
noisy case, L1 minimization can be written as a second order cone program, which is
harder than linear program but still solvable in polynomial time. Hence, basis pursuit
is a computationally efficient algorithm.

• Noiseless Basic Pursuit

minimize‖z‖0 subject to Az = y,

Note that ‖z‖ = |z1|+ |z2|+ . . .+ |zn|. If we choose t1, t2, . . . , tn such that
t1 ≥ |z1|, t2 ≥ |z2|, . . . , tn ≥ |zn|, the above optimization will yield the same so-
lution as the linear program

minimize
n

∑
i=1

ti

subject to |z1| ≤ t1
|z2| ≥ −t2

...
|zn| ≥ −tn

Az = y

• Noisy Basic Pursuit

minimize‖z‖1 subject to ‖Az−y‖ ≤ η
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Similar to the noiseless case, for noisy basic pursuit, we have

minimize
n

∑
i=1

ti

subject to |z1| ≤ t1
|z2| ≥ −t2

...
|zn| ≥ −tn

‖Az−y‖ ≤ η

This optimization problem is a second order cone program, which can be
solved in polynomial time.

4 Restricted Isometry Property

Definition 5. The sth restricted isometry constant δs = δs(A) of a matrix A ∈ Cm×N

is the smallest δ ≥ 0 such that

(1−δ )‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+δ )‖x‖2
2 (4)

for all s-sparse vectors x ∈ CN .

A satisfies the restricted isometry property if δs is small for reasonably large s.

4.1 Sufficient Condition for NSP

Theorem 6. Suppose that the 2sth restricted isometry constant of the matrix A ∈
Cm×N satisfies δ2s <

1
3 . Then every s-sparse vector x ∈ CN is the unique solution of

minimize‖z‖1 subject to Az = Ax. (5)

Proof. We will show that RIP implies NSP of oder s, which is in the form:

‖vS‖1 <
1
2
‖v‖1 ∀ v ∈ kerA\{0} and ∀ S s.t. card(S) = s. (6)

This will follow from the stronger statement

‖vS‖2 <
ρ

2
√

s
‖v‖1 ∀ v ∈ kerA\{0} and ∀ S s.t. card(S) = s, (7)

where

ρ :=
2δ2s

1−δ2s
< 1. (8)

Given v ∈ kerA, we let S0 be the first s largest absolute entries of the vector v
and S1 be the second s largest absolute entries of v etc. Since Av = 0,A(vS0 =
A(−vS1 −vS2 + · · ·). Hence, we have∥∥vS0

∥∥2
2 (9)

≤ 1
1−δ2s

∥∥A(vS0)
∥∥2

2 (10)

=
1

1−δ2s
〈A(vS0),A(−vS1)+A(−vS2)+ · · · 〉

=
1

1−δ2s
∑
k≥1
〈A(vS0),A(−vSk)〉 (11)

≤ δ

1−δ
∑
k≥1

∥∥vS0

∥∥
2

∥∥vSk

∥∥
2 (12)

=
ρ

2 ∑
k≥1

∥∥vS0

∥∥
2

∥∥vSk

∥∥
2 (13)

(14)

Since ∥∥vSk

∥∥
2 ≤

1√
s

∥∥vSk−1

∥∥
1 , (15)

we derive ∥∥vS0

∥∥
2 ≤

ρ

2
√

s ∑
k≥1

∥∥vSk−1

∥∥
1 ≤

ρ

2
√

s
‖v‖1 . (16)

This is the desired inequality.

4.2 Random Matrix Construction

Testing whether a matrix is satisfies RIP is NP-hard in the worst case [1]. Fortu-
nately, a random constructed matrix satisfies RIP with high probability as long as
m > Cδ s log N

S . Below list the theorems RIP for different types of random matrices
without proofs.
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Theorem 7. Let A be an m×N subgaussian random matrix. Then there exists a
constant C > 0 (depending only on the subgaussian parameters β ,κ) such that the
restricted isometry constant of 1√

m A satisfies δs ≤ δ with probability at least 1− ε

provided
m≥Cδ

−2(s ln(eN/s)+ ln(2ε
−1)) (17)

Theorem 8. Let A be an m×N Gaussian or Bernoulli random matrix. Then there
exists a universal constant C > 0 such that the restricted isometry constant of 1√

m A
satisfies δs ≤ δ with probability at least 1− ε provided

m≥Cδ
−2(s ln(eN/s)+ ln(2ε

−1)) (18)

5 Orthogonal Matching Pursuit Algorithm

Remember in our second lecture, finding the sparest solution x which is feasible to
sensing constraints given by an encoding matrix A and observation vector b can be
summarized as the following L0 minimization problem (which we call P0).

minimize ||x||0
subject to Ax = b (P0)

The problem above is hard to solve in general. But we can still get some inspiration
by considering the following simplest scenario.

Suppose one Genie from the story of Aladdin revealed us the unique solution x ex-
cept for one entry in it. Now we are required to resolve this remaining entry without
knowing its location and value. In this example, it suffices to assume b is a scalar
multiple of some column a j of the matrix A, viz, x ja j = b for some constant x j.

Instead of relaxing P0 to a L1 minimization problem as we did in previous lec-
ture, we consider a different approach by updating the solution from the Genie
in a greedy manner. That is, we minimize the error term in Euclidean distance

ε( j) = minx j ||x ja j − b||2 by setting the minimizer x∗j =
a∗j b
||a j ||22

. If the resulting

expression ε( j) = || a
∗
j ba j

||a j ||22
− b||22 is zero for some j, we shall conclude that x =

[0,0,0, · · · ,x j, · · · ,0,0,0]T .

Now, in a more general case, denote S the support set of x and suppose the Genie
already resolved the locations of i out of |S|many non-zero entries in x. For example,
the Genie can select a subset Ŝ⊆ S with cardinality |Ŝ|= i< |S| and reveal this subset
to us. Based on the subset Ŝ we can find a approximation x̂ for x with supp(x̂) ⊆ Ŝ

by minimizing the Euclidean distance between Ax̂ and b. To be more precise, let
x̂ = argmin

x:supp(x)⊆Ŝ
||Ax−b||2 and we can calculate a corresponding residual r̂ = b−Ax̂.

Then we can mimic the approach that we used to find the single entry above as fol-
lows. Firstly we start by finding a column a j outside the “Genie subset” Ŝ in the
matrix A which has the most “similarities” with the observation vector b. Using
Euclidean distance as the metric, the above can be done by plugging a minimizer

x∗j =
a∗j r̂
||a j ||22

to a similar error term ε( j) = minx j , j∈{1,2,...,length(x)}\Ŝ ||x ja j− r̂||2 as the

single-entry case. We have the following simplification.

min
x j , j∈{1,2,...,length(x)}\Ŝ

ε( j)

= min
x j , j∈{1,2,...,length(x)}\Ŝ

||x ja j− r̂||2 (19)

= min
j∈{1,2,...,length(x)}\Ŝ

||
a∗j r̂a j

||a j||22
− r̂||22 (20)

= min
j
||r̂||22−2

(
a∗j r̂
)2

||a j||22
+

(
a∗j r̂
)2

||a j||22
(21)

= min
j
||r̂||22−

(
a∗j r̂
)2

||a j||22
(22)

= max
j

|〈r̂,a j〉|
||a j||2

. (23)

where (19) comes from plugging the minimizer x∗j =
a∗j r̂
||a j ||22

to (19). Moreover

(21) holds since r̂ is a minimizer of ||AŜxŜ−b||2 where zŜ is the non-zero por-
tion of the vector x based on the “Genie subset” Ŝ. Then the optimized r̂ is given by
setting the derivative of this quadratic form be zero. In detail, ∇||AŜxŜ − b||2 =
2AŜ

∗ (AŜxŜ−b
)
= −2AŜ

∗r̂ = 0. The relation above suggests that the part of
columns in A according to the support set Ŝ are orthogonal1 to the residual r̂. This
in turn implies that if we relax the constraint in (1) such that index j can be chosen
from the set {1,2, . . . , length(x)}, we will still get the same answer.

1This property explains why the algorithm is called Orthogonal Matching Pursuit.
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The above argument inspires us to find an index j by maximizing the inner product
of the residual r̂ and columns in A if those columns are L2-normalized. Then we add
that index j to the “Genie subset” Ŝ to result a larger support set. We start with setting
Ŝ as an empty set and repeating the iterations over and over again, which suggests the
following greedy algorithm with a preassigned error threshold2 ε0.

5.1 Least Square Estimator

Note that the step xi+1 = argmin
x:supp(x)⊆Si+1

||Ax−b||2 in above algorithm is exhaustive if

we implement it directly. Hence we adopt a simpler expression for this step as the
below lemma states.

Lemma 9. In the i-th iteration (i ≥ 1) we have xi
Si = A†

Sib where xi
Si denotes the

restriction of xi to its support set Si and where † is the operator for pseudo-inversion.

Proof. This lemma simply says that z = xi
Si is a solution of the equation A∗

SiASiz =
A∗
Sib. We already proved this equation must be true for z = xi

Si since the gradient of
||ASixSi −b||2 need to be zero, from which the orthogonality condition follows.

5.2 Performance Guarantee

Note that we mentioned before that if x is exactly s-sparse and there is no noise, then
OMP terminates in the s-step with the correct output x or an error. This is a direct
result since each time we pick a unique index j and then |Si| = i means s steps are
enough for decoding. Therefore one may ask under which condition we can guaran-
tee OMP to succeed with s iterations. The following theorem gives the sufficient and
necessary conditions.

5.2.1 Exact Recovery Conditions

Theorem 10 (Exact Recovery Conditions). Given a matrix A∈Cm×N , every nonzero
vector x∈CN supported on a set S of size s is successfully recovered from OMP after
at most s iterations if and only if the following conditions hold.

1. AS is injective.

2. max j∈S
|〈r,a j〉|
||a j ||2

> max j∈Sc
|〈r,al〉|
||al ||2

for all nonzero r ∈ {Az,supp(z)⊆ S}.

Proof. =⇒ Suppose OMP succeeds after s iterations. Then any l ∈ Sc can not
be chosen in the first iteration, which in turn implies the second condition that
max j∈S

|〈r,a j〉|
||a j ||2

> max j∈Sc
|〈r,al〉|
||al ||2

for all nonzero r ∈ {Az,supp(z)⊆ S} holds. More-
over, since two vectors supported on S which have the same corresponding measure-
ment vector b must be equal, the matrix AS is injective.

⇐= To prove the sufficiency, we are going to prove that the set Si is always a subset
of S for all 0≤ i≤ s. This will imply Ss = S; hence as a result Axs = b and because
of the injectivity of AS, we conclude that xs = x. The claim above can be shown by
induction. Suppose up to the n-th step with 0≤ n≤ s−1 the support recovery is cor-
rect. We notice that at any n-th step, induction hypothesis gives Sn ⊆ S, which yields
rn = b−Axn ∈ {Az,supp(z) ⊆ S}. Hence by the second condition the index jn+1

lies in S as well. Therefore we get Sn+1 ⊆ S. Noticing the fact that the cardinality of
Si satisfies |Si|= i finishes our proof.

We have already seen the exact recovery condition for OMP in previous context.
One may still wonder if the standard restricted isometry property (R.I.P.) isenough to
guarantee the recovery of all s-sparse vectors within at most s iterations using OMP.
A counter-example is presented below, in which we construct a matrix A that satisfies
R.I.P but OMP will fail at the first step.

5.2.2 R.I.P is not sufficient

Example 11. Our recovery goal is standard. Given any s-sparse vector, we expect
a matrix A which staisfies R.I.P but OMP can not output the correct answer using s
iterations.

2Later we will see that if x is exactly s-sparse and there is no noise, OMP either stops in exactly s steps with the correct solution or gives a wrong solution after more than s+1 steps. Hence if s is known a priori,
this can be used as a natural stopping rule. For approximate sparsity and presence of noise, stopping rules based on convergence of the residual are typically used. In Algorithm 1 we use the vanilla version such that
after each iteration we compare the error threshold with L2 norm of the residual.
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Consider constructing a (s+1)× (s+1) L2 normalized matrix in the following way.
Fix 1 < η <

√
s, the matrix A is defined by

A =


Id

η

s
...
η

s

0 · · ·0
√

s−η2

s

 . (3)

From (3) we calculate that

A∗A− Id =

 0

η

s
...
η

s
η

s · · ·
η

s 0

 . (4)

The matrix above in (4) has eigenvalues −η√
s , η√

s and 0 with multiplicity s−1. Thus

the restricted isometry constant3 δs+1 satisfies

δs+1 = ||A∗A− Id||2→2 =
η√

s
< 1.

However, the s-sparse vector x = [1, . . . ,1,0]T can not be recovered from b = Ax af-
ter s iterations, since OMP even fails at the first iteration, i.e., the wrong index (the
last one) is picked at the first iteration. To see this, notice that

A∗
(
b−Ax0)= A∗Ax =


Id

η

s
...
η

s

0 · · ·0
√

s−η2

s




1
...
1
0

=


1
...
1
η

 .

Since η > 1, we get the first index j1 = s+1, which gives the incorrect answer.

5.2.3 Mutual Coherence

Instead of using the exact recovery conditions in Theorem 3.2 (which is in general
hard to check for every possible support set), we can relax ourselves to sufficient con-
ditions that are relatively easy to check. We know that R.I.P is not sufficient for OMP
to work., this brings up the question that if we can find an efficient way to check suf-
ficient conditions for OMP. It turns our the mutual coherence defined below becomes
useful.

Definition 12 (Mutual Coherence). The mutual coherence of a given matrix A ∈
Cm×N is the largest absolute normalized inner product between different columns
from A. It is defined by µ(A) = max1≤i, j≤N,i6= j

|〈ai,a j〉|
||ai||2·||a j ||2

.

Based on the definition above which characterizes the dependency between columns
of the matrix A, we have the following sufficient conditions by Elad [RM13].

Theorem 13 (Sufficient Recovery Condition). Given a full-rank matrix A ∈ Cm×N

with (m < N), if a solution x of the linear system Ax = b exists obeying

||x||0 <
1
2

(
1+

1
µ(A)

)
, (5)

then OMP runs with threshold parameter ε0 = 0 is guaranteed to give x exactly.

Remark 14. Once the solution x exists and satisfies the condition in (5), it is neces-
sarily the sparsest (the unique) solution.

Proof. Suppose that without loss of generality, the sparest solution is such that all its
s nonzero entries are at the beginning of the vector, in decreasing order of the values
|x j|. Thus we have

b = Ax =
s

∑
i=1

xiai. (6)

Note that in the first step for selecting the index j1, we must require the following
conditions for OMP to succeed.

|a∗1b|> |a∗kb| for all k > s. (7)

Combining (6) and (7) we get for all k > s

|
s

∑
i=1

xia∗1ai|> |
s

∑
i=1

xia∗kai|. (*)

3The restricted isometry constant is the infimum of all δ for a given matrix to satisfy R.I.P. This comes from the fact that for any matrix satisfies R.I.P with restricted isometry constant δk , we have the following
relation —- 1−δk ≤ λmin(A∗A)≤ λmax(A∗A)≤ 1+δk .
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Our goal is to find a sufficient condition in term of µ(A) that the inequality (∗) above
holds. The LHS of (∗) can be bounded from below as follows.

|
s

∑
i=1

xia∗1ai| ≥ |x1|−
s

∑
i=2
|xi| · |a∗1ai

≥ |x1|−
s

∑
i=2
|xi| ·µ(A)

≥ |x1|(1−µ(A)(s−1)) (8)

where (8) comes from that xi are ranked as the descending order.

On the other hand, the RHS of (∗) can also be bounded above by

|
s

∑
i=1

xia∗kai| ≤
s

∑
i=1
|xi| · |a∗kai|

≤
s

∑
i=1
|xi| ·µ(A)

≤ |x1| ·µ(A)s. (9)

The two bounds we get from (8) and (9) lead to a sufficient inequality allowing us to
derive (∗) from it.

|x1|(1−µ(A)(s−1))> |x1| ·µ(A)s, (9)

which yields 1+µ(A)> 2µ(A)s and hence ||x||0 = s < 1
2

(
1+ 1

µ(A)

)
is a sufficient

condition we need for the first step.

Once the first iteration succeeds, the remaining steps follow because the residual is
also also a linear combination of at most s columns in A. Thus the condition in (5)

guarantees that for all k > s, |∑s
i=1 xia∗2ai| > |∑s

i=1 xia∗kai| at the second step and so
on. By orthogonality of OMP, the same index will never be chosen again hence after
s iterations, the residual term becomes zero and the correct solution is recovered.

5.2.4 Random Measurements

We know that R.I.P. is not sufficient for the success of OMP. However, if we restrict
more on the restricted isometry constant δs and the number of measurements m, simi-
larly as Basis Pursuit, random construction on the encoding matrix A works for OMP
(asymptotically). We have the following theorem without proving it.

Theorem 15 (Random Measurements). Let δs ∈ (0,0.36) and m ≥ C · s log(N
s ) for

some constant C > 0. Fix a s-sparse vector x. Given any matrix A ∈ Cm×N satisfies
the following conditions

1. (M0). Independence: Two columns ai and a j are statistically independent for
all i 6= j.

2. (M1). Normalization: E||a j||22 = 1 for all j = 1,2, . . . ,N.

3. (M2). Joint Correlation: Let {xi} be a sequence of length-N vectors whose L2
norm do not exceed one. Let a j be a column of A which is independent from
this sequence. Then Pr[max j |〈a j,xi〉| ≤ ε]≥ 1−2s · e−cε2m.

4. (M3). Smallest singular value: For a given m×N submatrix B from A, the s-th
largest singular value σs(B) satisfies

Pr[σs(B)≥ 0.5]≥ 1− ec·m,

we have OMP succeeds with high probability Prs > 1−δs.
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