EEL207 Tutorial 9 Solutions: 2015-16, Sem II

Instructor: Uday Khankhoje

1) a) The equation of motion for an electron using Drude model is given by

d?z
mw = Frestoring + Fdamping + de’ving (1)
where Fuamping = —m’y% s Fariving = —eF and Frestoring = —%. Given the restoring potential
as V(z) = 2mwox + max . S0, Frestoring = mw%x — max®

Final expression for the equation of motion of an electron is as follows

d2 d
dt2 + mwox + maa® + mry d:zf —eF )
b) Expanding z(t) upto first order in o : z(t) ~ 2O (t) + az(V(t), and substituting in equation(2),
we get
2,:(0) 2:(1) (0)
mddj; + mozda;;2 + mwdz® + mawiz® + ma(z® 4+ azV)? + mvda;t =—eb (3)

Neglecting all the higher order terms of « greater than 1 and it is given that () and (V) are
independent of o. We can seperate the resultant equation into terms with and without « as follows

d?z(©) 9 dz®  —eE
(0) ~
72 +wpzt + 7 — 4
and L) de
T (1) T (03
72 + wizt 4+ 7 (z (5)
¢) Fourier transform of polarization P(w) is given as
P(w) = —eNg X (w) = —eNo(X O (w) + a X (w) (6)
Applying Fourier transform in equations (4) and (5)
(—iw)?X O 4 2 XO) — oy XO) = —eE(w)/m
(—iw)QX'( ) + wOX( ) — iw'y)?(l) —d() (w) * (X(O)(w) * X0 (w))
~ —eE(w)/m
XO(w) = % (7
wg — w? —iyw
£ _ f X O (wy f X ( )X(O) (w — w1 — wo)dwadw ®
wi — w? — iyw
Substituting (7) in (8) and (7),(8) in (6), we get
~ —eF(wi)/m —eFE(w2)/m —eE(w— wi1—wsz)/m
D _eE(w)/m f f oo wj _‘*1(1 _Z'/)’wl wo—w(2 )z</w2 w—(w— "Jl( wz)? _Z'Y(Z)/_Wl _"J2)dw2dw1
P(w) = —eNo(—5——5"— 2
wg — w? — w wi — w? — iyw ©

15( )—eox( +60/ / wl,wg;w)E(wfwlfa)g)E(wl)E(wg)dwldwg (10)



2)

b)

Equating equation (9) and (10)

e?No/(me
WD) = o/ meo) (1
W — w* — iyw
4703
(3) o —ae*/(m>ep)
X Wl, CUQ, w) = . . . B
( ) (wE — w? —iyw) (Wi — w? — iyw ) (W3 — w3 — iywe) (W — (W —wy — wg()fz; iy(w — wr -
Start with source-free curl equations 7 X E = —iwpH and \7 X H = jweE
Taking time function as exp™*, wave propagating in +ve Zdirection will have exp~*#* and given
fields are independent of y i.e % =0, we get
iBE, = —iwuH, (13)
. OE .
—iBE, — 8; = —iwpH, (14)
OFE
8—; = —iwuH, (15)
i6H, = iwek, (16)
. 0H .
—i0H, — 8:1: = jwek, 17
0H,
8—; = iweE, (18)

Clearly equations (13),(15) and (17) are in terms of £, H, and H.. Equation (14),(16) and (18)
are in terms of H,, I, and E.. So, they are decoupled.

TE mode (ie. £, =0)

From (13) and (17)

—i8 0H,
H, = 19
k2 Ox (19
iwp OH,
E, = 20
YU k2 Ox (20)
where k = w, /€ and k2 = k% — 2.
Once we know H,., we can calculate other fields using (19) and (20)
v XV x H=iwey xE =w?neH = —y?H
Taking the z-component, we will get the wave equation
H.
aax + (wWPpe — BHH, =0 1)
Solution of equation (21) is
H,(x) = Acos(k.x) + Bsin(k.x) (22)
Substituting (22) in (20)
E, = “];’—“(—A sin(kex) + B cos(kex)) (23)

C

Applying boundary conditions (Tangential Electric fields are zero at metal surfaces) i.e. £, = 0
atrzr =0,z =1L

B =0 and k. = 7 where n =1,2,3...

The final field equations comesout to be

H, = Acos(n—;x) exp'@i=F2) (24)

—;wu A sin(ﬂx) exp!(@t=52) (25)

E, = 7




c)

d)

H, = ﬁA sin(ﬁx) exp!(@Wi=h2) (26)
ke L
Similarly,
TM mode (i.e. H, = 0)
From (14) and (16)
E, = B 9E: 27)
k2 ox
—iwe OF,
Hy=—5— 2
Y k2 Ox %)

Once we know E., we can calculate other fields using (27) and (28)
v XV X E = —iwpy xH = w?ueE = — 72 E Taking the z-component, we will get the wave
equation

0F,
o, +Wie= B =0 (29)
Solution of equation (29) is
E.(z) = C cos(kcx) + Dsin(kcx) (30)

Applying boundary conditions (Tangential Electric fields are zero at metal surfaces) i.e. £, =0
atx=0,z=1L

C =0 and k. = "7 where n =1,2,3...

The final field equations comesout to be

E, = Dsm(n%:):) exp(i(wt — fz)) 31)
H, = _;:’ED os(%x) exp(i(wt — B2)) (32)
E, = _]jﬂDcos(%m) exp(i(wt — fz)) (33)

where their propagation constant is given as follows, § = \/w?ue — (5F)?
Given E(z,z = 0,t) = yEpsin(wxz/L) exp(imct/2L) Comparing this with (25) by substituting
z =0, we get

ke = 7, w = 37 which implies k = 5 and 8 = _¢2\£§w (i.e. wave is attenating)
PR . 3
E(z,z = 2z9,t) = yEosin(mx /L) exp(imet /2L) exp(— \/;ZZO) (34)
Given E(z,z = 0,t) = yEg exp(iwt)
Here, this electric field is formed using multiple TE modes, i.e.
—iwnl .
Ey(z,z,t) = X5, nda Ay sin(%z) exp!(@t=52) (35)
oo —twplL . T ) .
=X A, sm(fl‘) exp iwt = Egexp(iwt) (36)

multipliying both sides by sin(“ ) and integrating from 0 to L, we get

L .
—twplL
;:O:l/o Z:: Ay, sm(%x) sin( —a: )dx —/ Ejpsin( )d 37)
L . mm
= Eysin(—x)dzx (38)
0 L

m =

mm (39)

2mm 0 m is even

iwpL? { 2E,L m is odd
A

_—4FE

= E(x, z = Zo,t) =3, iseven(yio

. Tll i(wt—PBz0)
p sin( T x)exp ) (40)



