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EEL207 Tutorial 8 Solutions: 2015-16, Sem II
Instructor: Uday Khankhoje

1) Choice of coordinate axis in this problem is as follows: interface between the two media is assumed
to be at z = 0 and normal to the x axis, and the plane of incidence is assumed to be the x− z plane.
The angle of incidence is denoted by θi and the free space propagation constant (ω/c) by k0. A time
dependance of exp(jωt) is assumed and suppressed throughout the solution.

a) We know that the continuity of tangential electric and magnetic fields across the interface require
kx (component of the k parallel to the interface) to be continuous across the interface. Now, for the
incident field, kinc

x = k0n1 sin θi and therefore for the transmitted field ktran
x = kinc

x = k0n1 sin θi.
Since the magnitude of the propagation constant in the second media is k0n2:

ktran
z =

√
k20n

2
2 − (kinc

x )2 = k0

√
n22
n21
− sin2 θi = k0

√
sin2 θc − sin2 θi (1)

Clearly, for θi > θc, ktran
z is imaginary. Defining α by ktran

z = −jk0n1α, it is easy to see that the
spatial dependance of the transmitted wave will be given by:

Etran ∼ exp(−j(ktran
x x+ ktran

z z)) ∼ exp(−k0n1αz) exp(−jk0n1x sin θi) (2)

b) The incident, reflected and transmitted electric fields can be expressed as:

Einc = E0 exp(−jk0n1(x sin θi + z cos θi))ŷ (3a)

Eref = ΓE0 exp(−jk0n1(x sin θi − z cos θi))ŷ (3b)

Etran = τE0 exp(−jk0n1x sin θi) exp(−k0n1αz)ŷ (3c)

where Γ and τ are the reflection and transmission coefficients which need to be solved for. The
incident, reflected and transmitted magnetic fields can be computed using the Faraday’s rule:

∇× E = −jωµ0H =⇒ H =
k× E
ωµ0

(4)

Therefore:

Hinc =
n1E0

η0
(ẑ sin θi − x̂ cos θi) exp(−jk0n1(x sin θi + z cos θi)) (5a)

Href =
n1ΓE0

η0
(ẑ sin θi + x̂ cos θi) exp(−jk0n1(x sin θi − z cos θi)) (5b)

Htran =
n1τE0

η0
(ẑ sin θi + jx̂α) exp(−jk0n1x sin θi) exp(−k0n1αz) (5c)

Imposing continuity of Ey and Hx at z = 0:

1 + Γ = τ (6a)

1− Γ = −jατ (6b)

from which
Γ =

1 + jα

1− jα
, τ =

2

1− jα
(7)

Clearly |Γ| = 1, which implies that there is 100% reflection at the interface.
c) Substitute Eq. 7 into Eqs. 3 and 5 to obtain the electric and magnetic fields in all space, including

z > 0.
d) The time average poynting vector is given by:

S =
1

2
Re(E×H∗) (8)
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Thus, for the transmitted field:

Stran =
1

2
Re(Etran ×H∗tran)

=
|τ |2|E0|2n21

2η20
exp(−2k0n1αz)Re(ŷ × (ẑ sin θi − jx̂α))

= x̂
|τ |2|E0|2n21 sin θi

2η20
exp(−2k0n1αz) (9)

Since Stran is entirely along x axis, there is no transport of energy along the z direction on an
average (there is instantaneous transport of energy even in the z direction). This is an important
property of the evanescent fields set up during total internal reflection.

2) To be able to excite the surface plasmon polariton at the metal-air interface, we need an excitation
which satisfies:

kx = kSP = k0

√
εm

1 + εm
(10)

where εm is the relative permittivity of metal. (This is the same condition used in Prob. 1, part a).
Now, at optical frequencies, εm < 0, and thus (εm = −a):

kx = k0

√
a

a− 1
> k0 (11)

If we attempt to excite the Surface plasmon polariton from air itself by using a plane wave, we will
never be able to satisfy Eq. 11 since kx =

√
k20 − k2y < k0. Thus, we attempt to excite the surface

plasmon through a medium with larger refractive index (glass in this case). A plane wave propagating
in glass can potentially satisfy Eq. 11, since kx of this wave is bounded by k0nglass and not k0. In
fact, we can compute the angle of incidence θi by imposing:

kx = k0nglass sin θi = k0

√
εm

1 + εm
(12)

or, equivalently:

sin θi =
1

nglass

√
εm

1 + εm
(13)

3) The set up for the problem is shown in Fig. 1.
a) For this polarization ~E is along ŷ, and ~B in x−z plane as in the Figure. Thus, the first boundary

conditions give us Ei + Er = Et (1), and the fourth boundary condition gives us
(Ei(− cos θ1)/v1 + Er(cos θ1)/v1)/µ1 = Et(− cos(θ2))/(µ2v2) (2). Rearranging these two equa-
tions we get the reflection coefficient as Er/Ei = (1− αβ)/(1 + αβ) where, as used in class,
α = cos(θ2)/ cos(θ1) and β = (µ1v1)/(µ2v2). Thus, for the reflection to be zero at any angle,
we will require αβ = 1. For a non-magnetic medium, this implies that (by using Snell’s law)

α =

√
1− (v2/v1)2 sin2(θ1)/ cos θ1 = 1/β = v2/v1 ⇒ v1 = v2

i.e. the two media must have the same refractive index, a contradiction.

b) The polarization axis should be horizontal. Since road has poor reflectivity, we won’t concern
ourselves too much with it – the glare is coming from the vertical sheets. Let us consider light
falling on the sheet, such that the plane of incidence is horizontal*. We have derived in (a) that
there is no Brewster’s angle for perpendicular polarization. Thus, light that is polarized vertically
(i.e. perpendicular to the plane of incidence), there is no angle at which the reflectivity goes to
zero, where as for horizontally polarized light, there exists such an angle. So by aligning the axis
of the polarizer horizontally, we can achieve a two fold reduction in glare: first, by eliminating
vertically polarized light (by virtue of the polarizer) and two, by utilizing Brewster’s angle to
further reduce the horizontally polarized light that has been let through.
*: this is by no means necessary. Incoming plane waves can fall at any angle on the sheet. In such
a scenario, the theoretically optimal orientation of the polarizer would depend on these angles.
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Fig. 1. Schematic for problem 3

But, since the question asked you to choose from horizontal or vertical alignment, it is clear that
horizontal wins, based on the above reasoning.

4) We start with source free Maxwell’s equations;

∇× ~E = −jωµ ~H (14)

∇× ~H = jωε ~E. (15)

Then do some algebra;

~E · (∇× ~H∗)− ~H∗ · (∇× ~E) = −jω(ε∗ ~E · ~E∗ − µ ~H∗ · ~H) (16)

also: ∇ · ( ~A× ~B) = ~B · (∇× ~A)− ~A · (∇× ~B). (17)

Next, we derive the energy conservation theorem.
Take volume integral and apply divg. thm.

∫
v∇ · ~AdV =

∮
S
~A · n̂ dS∮

S
( ~E × ~H∗) · n̂ dS = jω

∫
V

(
ε∗| ~E|2 − µ| ~H|2

)
dV (18)

Simplify into real and imag. parts: ε = ε′ + jε′′, µ = µ′ + jµ′′∮
S

( ~E × ~H∗) · n̂dS = jω

∫
V

(ε′| ~E|2 − µ′| ~H|2)dV + ω

∫
V

(ε′′| ~E|2 + µ′′| ~H|2)dV (19)

Say that there are two solutions: ~E1, ~E2 and denote δ ~E = ~E1 − ~E2. In the presence of sources, we
have:

∇× ~E = ~Mi − jωµ ~H (20)

∇× ~H = ~Ji + jωε ~E (21)

Subtract each of these equations for the two solutions

∇× δ ~E = −jωµδ ~H (22)

∇× δ ~H = jωεδ ~E (23)

In other words, δ ~E, δ ~H satisfy the source free equations.
Apply the energy conservation theorem to δ ~E, δ ~H∮

S
(δ ~E × δ ~H∗) · n̂dS = jω

∫
V

(ε′|δ ~E|2 − µ′|δ ~H|2)dV + ω

∫
V

(ε′′|δ ~E|2 + µ′′|δ ~H|2)dV (24)

Re-examine LHS∮
S

(δ ~E × δ ~H∗) · n̂dS =

∮
S

(n̂× δ ~E) · δ ~H∗dS =

∮
S

(δ ~H∗ × n̂) · δ ~EdS (25)
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So, if n̂× ~E and/or n̂× ~H is specified over S, it implies that:
∮
S(δ ~E × δ ~H∗) · n̂dS = 0.

Real and imag. parts must go to zero, then:

0 = jω

∫
V

(ε′|δ ~E|2 − µ′|δ ~H|2)dV + ω

∫
V

(ε′′|δ ~E|2 + µ′′|δ ~H|2)dV (26)

ε′, ε′′, µ′, µ′′ are all > 0 in a lossy-medium
When ε′′ > 0, µ′′ > 0, throughout the medium, the real part of the above term can be zero only if
both δ ~E = 0 = δ ~H throughout V . This proves uniqueness.


