EEL207 Tutorial 5 Solutions: 2015-16, Sem II

Instructor: Uday Khankhoje

1) The speed of a point on the disk at a distance r from the axis is $v=\omega r$, so the force per unit charge is $\vec{f}_{\text {mag }}=\vec{v} \times \vec{B}=\omega r B \hat{r}$. The EMF is therefore

$$
\mathcal{E}=\int_{0}^{a} f_{\mathrm{mag}} d r=\omega B a^{2} / 2
$$

and the current is $I=\mathcal{E} / R=\omega B a^{2} /(2 R)$. This problem illustrates a motional emf that can't be calculated directly from the flux rule, because the flux rule assumes the current to flow along a well-defined path, whereas in this example the current spreads out all over the disk.

2) Tangential Boundary Conditions

Two unknown vector fields \vec{P}, \vec{Q} are expressed in terms of a known vector field \vec{R} and some constants α, β.

$$
\begin{equation*}
\nabla \times \vec{P}+\beta \vec{Q}=\alpha \vec{R} \tag{1}
\end{equation*}
$$

At an interface we have

Derive boundary condition for the tangential components of \vec{P} at the interface.
(Step1) Geometry:

Take a wire frame (orientation same as right hand thumb rule

$$
\hat{s}=\hat{t}+\hat{n}
$$

(Step2) Take a surface integral on both sides of Eq. 1

$$
\iint_{s} \nabla \times \vec{P} \cdot \overrightarrow{d s}=\iint_{s}(\alpha \vec{R}-\beta \vec{Q}) \cdot \overrightarrow{d s}
$$

(Step3) Apply Stokes theorem to LHS above

$$
\oint \vec{P} \cdot \overrightarrow{d l}=\vec{P}_{2} \cdot \hat{t} \Delta l+\vec{P}_{1} \cdot \hat{n} \Delta h / 2+\vec{P}_{2} \cdot \hat{n} \Delta h / 2-\vec{P}_{1} \cdot \hat{t} \Delta l-\vec{P}_{2} \cdot \hat{n} \Delta h / 2-\vec{P}_{1} \cdot \hat{n} \Delta h / 2
$$

(Step4) Simplify RHS (Note that $d s=d n d \tau$)

$$
\begin{aligned}
\alpha \iint_{s} \vec{R}_{0}(t) \cdot \hat{s} \delta(n) d n d \tau-\beta \iint_{s} \vec{Q} \cdot \hat{s} \delta(n) d n d \tau & =\alpha \int \vec{R}_{0}(t) \cdot \hat{s} d t \int \delta(n) d n-\beta \vec{Q} \cdot \hat{s} \Delta l \Delta h \\
& =\vec{R}_{0}(t) \cdot \hat{s} \Delta l-\beta \vec{Q} \cdot \hat{s} \Delta l \Delta h
\end{aligned}
$$

(Step5) Take $\Delta h \rightarrow 0$ and simplify both sides

$$
\left.\left.\overrightarrow{P_{2}} \cdot \hat{(} t\right)-\overrightarrow{P_{1}} \cdot \hat{(} t\right)=\alpha \overrightarrow{R_{0}}(t) \cdot \hat{s}
$$

Note that R_{s} varies as a function of t but the only component along \hat{s} matters. Further $\hat{s}=\hat{t} \times \hat{n}$

$$
\begin{gathered}
\vec{P} \cdot \hat{t}=\vec{P} \cdot \hat{n} \times \hat{s}=\vec{P} \times \hat{n} \cdot \hat{s} \\
\Longrightarrow \overrightarrow{P_{2}} \times \hat{n}-\overrightarrow{P_{1}} \times \hat{n}=\alpha \overrightarrow{R_{0}}(t)
\end{gathered}
$$

Since this must be true for all \hat{s}.
So, if we write

$$
\overrightarrow{R_{0}}(t)=R_{o t} \hat{t}+R_{o n} \hat{n}+R_{o s} \hat{s}
$$

If we take $x y$ plane as interface and $\overrightarrow{R_{0}}(t)=\hat{y}$. Then

1. x-component: Assume $\hat{t}=-\hat{x}$

$$
\begin{align*}
& \vec{P}_{2} \cdot(-\hat{x})-\vec{P}_{1} \cdot(-\hat{x})=\alpha \\
& \quad \Longrightarrow P_{1 x}-P_{2 x}=\alpha \tag{2}
\end{align*}
$$

2. y-component: $\hat{y}=\hat{t}$

$$
\begin{aligned}
& \vec{P}_{2} \hat{y}-\vec{P}_{1} \hat{y}=0 \\
& \Longrightarrow P_{2 y}=P_{1 y}
\end{aligned}
$$

Normal Boundary Conditions

Given that \vec{P} satisfies the following divergence relation:

$$
\nabla \cdot \vec{P}=\sigma_{s} \delta(n)+\rho_{v}
$$

boundary conditions on the normal components can be derived.
Take volume integral on both sides and simplify the LHS by Divergence Theorem.

Note that $\Delta h \rightarrow 0$. Simplify RHS

$$
\begin{gathered}
\iiint\left(\sigma_{s} \delta(n)+\rho_{v}\right) d n d t_{1} d t_{2} \\
=\sigma_{s} \iint d t_{1} d t_{2} \int \delta(n) d n+\rho_{v} \Delta v \\
=\sigma_{s} \Delta s+\rho_{v} \Delta s \Delta h
\end{gathered}
$$

Take $\Delta h \rightarrow 0$ and simplify

$$
\vec{P}_{1} \cdot \hat{n}-\overrightarrow{P_{2}} \cdot \hat{n}=\sigma_{s}
$$

If there is a surface charge density $P_{1 z}-P_{2 z}=\sigma_{s}$, else $P_{1 z}-P_{2 z}$.
3) A radial current will flow by symmetry: $\vec{J}=\sigma \vec{E}=\sigma Q /\left(4 \pi \epsilon_{0} r^{2}\right) \hat{r}$. This gives the conduction current as $I=-d Q / d t=\int \vec{J} \cdot d \vec{s}=\sigma Q / \epsilon_{0}$. By Ampere's law, the displacement current is $\vec{J}_{d}=\epsilon_{0} d \vec{E} / d t=$

$d Q / d t \hat{r} /\left(4 \pi r^{2}\right)=-\sigma Q /\left(4 \pi \epsilon_{0} r^{2}\right) \hat{r}$, which exactly cancels the conduction current. Since $\nabla \cdot \vec{B}=0, \nabla \times \vec{B}=$ 0 , we have $\vec{B}=0$.
4) (a)

$$
\varepsilon=-\frac{d \phi}{d t}=-B l \frac{d x}{d t}=-B l v ; \varepsilon=I R \Rightarrow I=\frac{B l v}{R}
$$

Never mind the minus sign - it just tells that the direction of flow: $(v \times B)$ is upward, in the bar so downwards in the resistor.
(b)

$$
F=I l B=\frac{B^{2} l^{2} v}{R}(\text { to the left })
$$

(c)

$$
F=m a=m \frac{d v}{d t}=-\frac{B^{2} l^{2}}{R} v \Rightarrow \frac{d v}{d t}=-\left(\frac{B^{2} l^{2}}{R m}\right) v \Rightarrow v=v_{0} e^{-\frac{B^{2} l^{2}}{m R} t} .
$$

(d) The energy goes into heat in the resistor. The power delivered to resistor is $I^{2} R$, so

$$
\frac{d W}{d t}=I^{2} R=\frac{B^{2} l^{2} v^{2}}{R^{2}} R=\frac{B^{2} l^{2}}{R} v_{0}^{2} e^{-2 \alpha t}, \text { where } \alpha=\frac{B^{2} l^{2}}{m R} ; \frac{d W}{d t}=\alpha m v_{0}^{2} e^{-2 \alpha t}
$$

The total energy delivered to the resistor is $W=\alpha m v_{0}^{2} \int_{0}^{\infty} e^{-2 \alpha t} d t=\left.\alpha m v_{0}^{2} \frac{e^{-2 \alpha t}}{-2 \alpha}\right|_{0} ^{\infty}=\alpha m v_{0}^{2} \frac{1}{2 \alpha}=$ $\frac{1}{2} m v_{0}^{2}$

