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EEL207 Tutorial 5 Solutions: 2015-16, Sem II
Instructor: Uday Khankhoje

1) The speed of a point on the disk at a distance r from the axis is v = ωr, so the force per unit charge is
~fmag = ~v × ~B = ωrBr̂. The EMF is therefore

E =

∫ a

0
fmag dr = ωBa2/2,

and the current is I = E/R = ωBa2/(2R). This problem illustrates a motional emf that can’t be calculated
directly from the flux rule, because the flux rule assumes the current to flow along a well-defined path,
whereas in this example the current spreads out all over the disk.

2) Tangential Boundary Conditions

Two unknown vector fields ~P , ~Q are expressed in terms of a known vector field ~R and some constants α, β.

∇× ~P + β ~Q = α~R (1)

At an interface we have

~R(n, t) = ~R0(t)δ(n)

Derive boundary condition for the tangential components of ~P at the interface.
(Step1) Geometry:

Take a wire frame (orientation same as right hand thumb rule

ŝ = t̂+ n̂

(Step2) Take a surface integral on both sides of Eq. 1∫∫
s
∇× ~P . ~ds =

∫∫
s
(α~R− β ~Q). ~ds

(Step3) Apply Stokes theorem to LHS above∮
~P .~dl = ~P2.t̂∆l + ~P1.n̂∆h/2 + ~P2.n̂∆h/2− ~P1.t̂∆l − ~P2.n̂∆h/2− ~P1.n̂∆h/2

(Step4) Simplify RHS (Note that ds = dndτ )

α

∫∫
s

~R0(t).ŝδ(n)dndτ − β
∫∫

s

~Q.ŝδ(n)dndτ = α

∫
~R0(t).ŝdt

∫
δ(n)dn− β ~Q.ŝ∆l∆h

= ~R0(t).ŝ∆l − β ~Q.ŝ∆l∆h
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(Step5) Take ∆h→ 0 and simplify both sides

~P2 .̂(t)− ~P1 .̂(t) = α ~R0(t).ŝ

Note that Rs varies as a function of t but the only component along ŝ matters. Further ŝ = t̂× n̂
~P .t̂ = ~P .n̂× ŝ = ~P × n̂.ŝ

=⇒ ~P2 × n̂− ~P1 × n̂ = α ~R0(t)

Since this must be true for all ŝ.
So, if we write

~R0(t) = Rott̂+Ronn̂+Rosŝ

If we take xy plane as interface and ~R0(t) = ŷ. Then
1. x-component: Assume t̂ = −x̂

~P2.(−x̂)− ~P1.(−x̂) = α

=⇒ P1x − P2x = α (2)

2. y-component: ŷ = t̂
~P2ŷ − ~P1ŷ = 0

=⇒ P2y = P1y

Normal Boundary Conditions
Given that ~P satisfies the following divergence relation:

∇. ~P = σsδ(n) + ρv,

boundary conditions on the normal components can be derived.
Take volume integral on both sides and simplify the LHS by Divergence Theorem.

∫
V
∇.Pdv =

∮
~P .dS = ~P1.n̂∆s− ~P2.n̂∆s+ ( )2πr∆h (curved sides)

Note that ∆h→ 0. Simplify RHS ∫∫∫
(σsδ(n) + ρv)dndt1dt2

= σs

∫∫
dt1dt2

∫
δ(n)dn+ ρv∆v

= σs∆s+ ρv∆s∆h

Take ∆h→ 0 and simplify
~P1.n̂− ~P2.n̂ = σs

If there is a surface charge density P1z − P2z = σs, else P1z − P2z .

3) A radial current will flow by symmetry: ~J = σ ~E = σQ/(4πε0r
2)r̂. This gives the conduction current

as I = −dQ/dt =
∫
~J · d~s = σQ/ε0. By Ampere’s law, the displacement current is ~Jd = ε0d ~E/dt =
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dQ/dtr̂/(4πr2) = −σQ/(4πε0r2)r̂, which exactly cancels the conduction current. Since ∇· ~B = 0,∇× ~B =
0, we have ~B = 0.

4) (a)

ε = −dφ
dt

= −Bldx
dt

= −Blv; ε = IR⇒ I =
Blv

R
.

Never mind the minus sign - it just tells that the direction of flow: (v × B) is upward, in the bar so
downwards in the resistor.

(b)

F = IlB =
B2l2v

R
(to the left)

(c)

F = ma = m
dv

dt
= −B

2l2

R
v ⇒ dv

dt
= −(

B2l2

Rm
)v ⇒ v = v0e

−B2l2

mR
t.

(d) The energy goes into heat in the resistor. The power delivered to resistor is I2R, so

dW

dt
= I2R =

B2l2v2

R2
R =

B2l2

R
v20e
−2αt, whereα =

B2l2

mR
;
dW

dt
= αmv20e

−2αt.

The total energy delivered to the resistor is W = αmv20
∫∞
0 e−2αtdt = αmv20

e−2αt

−2α |
∞
0 = αmv20

1
2α =

1
2mv

2
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