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ELL212 - Tutorial 4 Solutions, Sem II 2015-16

Problem 1
a) The charge density ρ(r) is given by:

ρ(r) = e(p(r)− n(r)) = en0

(
exp

(
− eφ(r)

kBT

)
− exp

(
eφ(r)

kBT

))
(1)

For small Q, the potential φ(r) set-up in the plasma is also small, and thus the charge density can
approximated by a linear expression in φ(r):

ρ(r) = −2e2n0
kBT

φ(r) (2)

Substituting into the poisson’s equation:

∇2φ(r) =
2e2n0
ε0kBT

φ(r) (3)

Using the sperhical coordinate system (wherein for a r dependant potential,∇2φ(r) ≡ 1
r2

∂
∂r (r2 ∂

∂r (r2φ(r))) =
1
r

∂2

∂r2 (rφ(r))), we obtain: In spherical coordinates, use Laplacian expression,

1

r

∂2

∂r2
(rφ(r)) =

2e2n0
ε0kBT

φ(r) (4)

b) The solution to Eq. 4 can be written as

φ(r) = A1
exp(r/λD)

r
+A2

exp(−r/λD)

r
(5)

where λD =
√
ε0kBT/2n0e2. Clearly A1 = 0 since the potential (and hence the electric field) cannot

go to ∞ as r → ∞. To compute A2, we make use of the fact that there is a point charge Q sitting
at the origin. The electric field at a distance r from the origin:

E(r) = −r̂ ∂φ(r)

∂r
= r̂

A2

r2

(
1 +

r

λD

)
exp(−r/λD) (6)

Consider a guassian surface of a very small radius R centered at the origin, then the flux of E through
this surface is given by:

Φ =

∫
E · dS = 4πA2

(
1 +

R

λD

)
exp(−R/λD) (7)

The charge enclosed within this surface is given by

Qenc = Q+ 4π

∫ R

0
ρ(r)r2dr = Q− 8πe2n0

kBT

∫ R

0
φ(r)r2dr (8)

It is easy to show that
∫ R
0 φ(r)r2dr = A2λD(λD(1−exp(−R/λD))−R exp(−R/λD))→ 0 as R→ 0

and Φ→ 4πA2 as R→ 0. Thus, the gauss’ law (Φ = Qenc/ε0) results in A2 = Q/4πε0 and hence

φ(r) =
Q

4πε0r
exp(−r/λD)

c) The potential φ0(r) due to Q in the absence of plasma is trivially given by

φ0(r) =
Q

4πε0r
(9)

and thus φ(r) = φ0(r) exp(−r/λD). Thus, the effect of the charge Q is screened by the surrounding
mobile plasma and becomes negligible over length scales of the order of λD which can be taken to
be an estimate of the screening length.
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Problem 2
a) |ψ(r)|2 is the probability of finding the electron per unit volume at a distance r from the origin. Since

the electron must be found somewhere in all space,∫ ∞

0
|ψ(r)|24πr2dr = 1 (10)

Using ψ(r) = A exp(−r/a), we obtain:

A =
1√
πa3

(11)

b) Consider a small volume ∆V in space. The probability of finding the electron in that volume is
| ψ |2 dV . Thus the average charge ∆Q in this volume is:

∆Q = −e|ψ(r)|2∆V (12)

and hence the average charge density ρ(r)

ρ(r) =
∆Q

∆V
= −e|ψ(r)|2 = − e

πa3
exp(−2r/a) (13)

To calculate the field at r due to this charge distribution, consider a spherical gaussian surface of
radius r centered at the origin and apply the gauss’ law:

E(r)4πr2 =
1

ε0

∫ r

0

e

πa3
exp(−2R/a)4πR2dR (14)

which, after some simplification, gives:

E(r) = − e

4πε0r2

[
1− exp(−2r/a)

(
1 +

2r

a
+

2r2

a2

)]
(15)

For small r, we can expand E(r) into a taylor series in r (or use exp(−2r/a) ≈ 1−2r/a+ 2r2/a2−
4r3/3a3) to obtain:

E(r) ≈ − er

3πε0a3
(16)

c) Consider an external field Eex. This displaces the electron cloud from positive nucleus. We ignore the
distortion in the shape of electron cloud. If the electron cloud displaced by distance d from nucleus
due to the field. In equilibrium, the net force on nucleus is 0 and hence (Eex and E refer only to the
magnitudes of the external electric field and the electric field due to the electron cloud):

E(d) = Eex (17)

For small d, using Eq. 16
p = ed = 3πε0a

3Eex (18)

where p is the dipole formed by the atom. Therefore the polarisability is given by α = 3πε0a
3.


