ELL212 - Tutorial 4 Solutions, Sem II 2015-16

Problem 1

a) The charge density $\rho(r)$ is given by:

$$
\begin{equation*}
\rho(r)=e(p(r)-n(r))=e n_{0}\left(\exp \left(-\frac{e \phi(r)}{k_{B} T}\right)-\exp \left(\frac{e \phi(r)}{k_{B} T}\right)\right) \tag{1}
\end{equation*}
$$

For small Q, the potential $\phi(r)$ set-up in the plasma is also small, and thus the charge density can approximated by a linear expression in $\phi(r)$:

$$
\begin{equation*}
\rho(r)=-\frac{2 e^{2} n_{0}}{k_{B} T} \phi(r) \tag{2}
\end{equation*}
$$

Substituting into the poisson's equation:

$$
\begin{equation*}
\nabla^{2} \phi(r)=\frac{2 e^{2} n_{0}}{\epsilon_{0} k_{B} T} \phi(r) \tag{3}
\end{equation*}
$$

Using the sperhical coordinate system (wherein for ar dependant potential, $\nabla^{2} \phi(r) \equiv \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\left(r^{2} \phi(r)\right)\right)=$ $\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \phi(r))$), we obtain: In spherical coordinates, use Laplacian expression,

$$
\begin{equation*}
\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \phi(r))=\frac{2 e^{2} n_{0}}{\epsilon_{0} k_{B} T} \phi(r) \tag{4}
\end{equation*}
$$

b) The solution to Eq. 4 can be written as

$$
\begin{equation*}
\phi(r)=A_{1} \frac{\exp \left(r / \lambda_{D}\right)}{r}+A_{2} \frac{\exp \left(-r / \lambda_{D}\right)}{r} \tag{5}
\end{equation*}
$$

where $\lambda_{D}=\sqrt{\epsilon_{0} k_{B} T / 2 n_{0} e^{2}}$. Clearly $A_{1}=0$ since the potential (and hence the electric field) cannot go to ∞ as $r \rightarrow \infty$. To compute A_{2}, we make use of the fact that there is a point charge Q sitting at the origin. The electric field at a distance r from the origin:

$$
\begin{equation*}
\mathbf{E}(r)=-\hat{r} \frac{\partial \phi(r)}{\partial r}=\hat{r} \frac{A_{2}}{r^{2}}\left(1+\frac{r}{\lambda_{D}}\right) \exp \left(-r / \lambda_{D}\right) \tag{6}
\end{equation*}
$$

Consider a guassian surface of a very small radius R centered at the origin, then the flux of \mathbf{E} through this surface is given by:

$$
\begin{equation*}
\Phi=\int \mathbf{E} \cdot d \mathbf{S}=4 \pi A_{2}\left(1+\frac{R}{\lambda_{D}}\right) \exp \left(-R / \lambda_{D}\right) \tag{7}
\end{equation*}
$$

The charge enclosed within this surface is given by

$$
\begin{equation*}
Q_{\mathrm{enc}}=Q+4 \pi \int_{0}^{R} \rho(r) r^{2} d r=Q-\frac{8 \pi e^{2} n_{0}}{k_{B} T} \int_{0}^{R} \phi(r) r^{2} d r \tag{8}
\end{equation*}
$$

It is easy to show that $\int_{0}^{R} \phi(r) r^{2} d r=A_{2} \lambda_{D}\left(\lambda_{D}\left(1-\exp \left(-R / \lambda_{D}\right)\right)-R \exp \left(-R / \lambda_{D}\right)\right) \rightarrow 0$ as $R \rightarrow 0$ and $\Phi \rightarrow 4 \pi A_{2}$ as $R \rightarrow 0$. Thus, the gauss' law ($\Phi=Q_{\text {enc }} / \epsilon_{0}$) results in $A_{2}=Q / 4 \pi \epsilon_{0}$ and hence

$$
\phi(r)=\frac{Q}{4 \pi \epsilon_{0} r} \exp \left(-r / \lambda_{D}\right)
$$

c) The potential $\phi_{0}(r)$ due to Q in the absence of plasma is trivially given by

$$
\begin{equation*}
\phi_{0}(r)=\frac{Q}{4 \pi \epsilon_{0} r} \tag{9}
\end{equation*}
$$

and thus $\phi(r)=\phi_{0}(r) \exp \left(-r / \lambda_{D}\right)$. Thus, the effect of the charge Q is screened by the surrounding mobile plasma and becomes negligible over length scales of the order of λ_{D} which can be taken to be an estimate of the screening length.

Problem 2

a) $|\psi(r)|^{2}$ is the probability of finding the electron per unit volume at a distance r from the origin. Since the electron must be found somewhere in all space,

$$
\begin{equation*}
\int_{0}^{\infty}|\psi(r)|^{2} 4 \pi r^{2} d r=1 \tag{10}
\end{equation*}
$$

Using $\psi(r)=A \exp (-r / a)$, we obtain:

$$
\begin{equation*}
A=\frac{1}{\sqrt{\pi a^{3}}} \tag{11}
\end{equation*}
$$

b) Consider a small volume ΔV in space. The probability of finding the electron in that volume is $|\psi|^{2} d V$. Thus the average charge ΔQ in this volume is:

$$
\begin{equation*}
\Delta Q=-e|\psi(r)|^{2} \Delta V \tag{12}
\end{equation*}
$$

and hence the average charge density $\rho(r)$

$$
\begin{equation*}
\rho(r)=\frac{\Delta Q}{\Delta V}=-e|\psi(r)|^{2}=-\frac{e}{\pi a^{3}} \exp (-2 r / a) \tag{13}
\end{equation*}
$$

To calculate the field at r due to this charge distribution, consider a spherical gaussian surface of radius r centered at the origin and apply the gauss' law:

$$
\begin{equation*}
E(r) 4 \pi r^{2}=\frac{1}{\epsilon_{0}} \int_{0}^{r} \frac{e}{\pi a^{3}} \exp (-2 R / a) 4 \pi R^{2} d R \tag{14}
\end{equation*}
$$

which, after some simplification, gives:

$$
\begin{equation*}
E(r)=-\frac{e}{4 \pi \epsilon_{0} r^{2}}\left[1-\exp (-2 r / a)\left(1+\frac{2 r}{a}+\frac{2 r^{2}}{a^{2}}\right)\right] \tag{15}
\end{equation*}
$$

For small r, we can expand $E(r)$ into a taylor series in r (or use $\exp (-2 r / a) \approx 1-2 r / a+2 r^{2} / a^{2}-$ $4 r^{3} / 3 a^{3}$) to obtain:

$$
\begin{equation*}
E(r) \approx-\frac{e r}{3 \pi \epsilon_{0} a^{3}} \tag{16}
\end{equation*}
$$

c) Consider an external field $E_{\text {ex }}$. This displaces the electron cloud from positive nucleus. We ignore the distortion in the shape of electron cloud. If the electron cloud displaced by distance d from nucleus due to the field. In equilibrium, the net force on nucleus is 0 and hence ($E_{\text {ex }}$ and E refer only to the magnitudes of the external electric field and the electric field due to the electron cloud):

$$
\begin{equation*}
E(d)=E_{\mathrm{ex}} \tag{17}
\end{equation*}
$$

For small d, using Eq. 16

$$
\begin{equation*}
p=e d=3 \pi \epsilon_{0} a^{3} E_{\mathrm{ex}} \tag{18}
\end{equation*}
$$

where p is the dipole formed by the atom. Therefore the polarisability is given by $\alpha=3 \pi \epsilon_{0} a^{3}$.

