ELL212 - Tutorial 3, Sem II 2015-16

1) Consider a scalar function $f(x, y)$ defined by

$$
f(x, y)=x y+\frac{x^{2} y^{3}}{2}
$$

Compute the gradient of $f, \nabla f$. Verify that

$$
\int_{P_{1}, C}^{P_{2}} \nabla f \cdot \mathrm{~d} \vec{l}=f\left(P_{2}\right)-f\left(P_{1}\right)
$$

where $P_{1}=(0,0)$ and $P_{2}=(1,1)$ and C is a contour joining P_{1} and P_{2} via the curve $y=x^{n}$.
2) Compute the divergence of the following vector function:

$$
\vec{v}=x y \hat{x}+y^{2} \hat{y}+y z \hat{z}
$$

Verify the Gauss’ Divergence theorem

$$
\int_{V} \nabla \cdot \vec{v} \mathrm{~d} V=\oint_{S} \vec{v} \cdot \mathrm{~d} \vec{S}
$$

Over the volume of a prism as shown in Fig. 1

Fig. 1. Figure for $\mathbf{Q 2}$
3) a) Prove the following identities:
i) In spherical coordinates $\left(\delta^{3}(\mathbf{r})\right.$ is the 3D Dirac Delta function)

$$
\nabla \cdot\left(\frac{1}{r^{2}} \hat{r}\right)=4 \pi \delta^{3}(\mathbf{r})
$$

ii) For any vector field \vec{v} and scalar field ψ :

$$
\nabla(\vec{v} \psi)=\nabla \psi \cdot \vec{v}+\psi \nabla \cdot \vec{v}
$$

b) For the scalar function

$$
f(r, \theta, \phi)=\frac{\exp (-\lambda r)}{r}
$$

Compute ∇f and $\nabla^{2} f$. [Hint: Use the result of part a]
4)* By calculating the curl of the following vector functions, classify them as conservative or nonconservative:
a) $\vec{v}(r, \theta, \phi)=r^{2} \sin \theta \hat{r}+4 r^{2} \cos \theta \hat{\theta}+r^{2} \tan \theta \hat{\phi}$
b) $\vec{v}(x, y, z)=x^{2} \hat{x}+x y \hat{y}+z^{2} \hat{z}$
5)* Let $\Phi(\vec{r})$ be a scalar function satisfying

$$
\nabla^{2} \Phi=0
$$

in some volume V. Additionally it is known that $\Phi=0$ at the surface S of the volume V. Prove that $\Phi=0$ everywhere inside the volume V. [Hint: consider the integral $I=\int_{V}|\nabla \Phi|^{2} \mathrm{~d} V$ and try to prove that it is zero subject to the above conditions.]

