1) Consider a scalar function f(x, y) defined by

$$f(x,y) = xy + \frac{x^2y^3}{2}$$

Compute the gradient of f, ∇f . Verify that

$$\int_{P_1,C}^{P_2} \nabla f \cdot \mathbf{d}\vec{l} = f(P_2) - f(P_1)$$

where $P_1 = (0,0)$ and $P_2 = (1,1)$ and C is a contour joining P_1 and P_2 via the curve $y = x^n$. 2) Compute the divergence of the following vector function:

$$\vec{v} = xy\hat{x} + y^2\hat{y} + yz\hat{z}$$

Verify the Gauss' Divergence theorem

$$\int_V \nabla \cdot \vec{v} \, \mathrm{d}V = \oint_S \vec{v} \cdot \mathrm{d}\bar{S}$$

Over the volume of a prism as shown in Fig. 1

Fig. 1. Figure for Q2

- 3) a) Prove the following identities:
 - i) In spherical coordinates ($\delta^3(\mathbf{r})$ is the 3D Dirac Delta function)

$$\nabla \cdot \left(\frac{1}{r^2}\hat{r}\right) = 4\pi\delta^3(\mathbf{r})$$

ii) For any vector field \vec{v} and scalar field ψ :

$$\nabla(\vec{v}\psi) = \nabla\psi \cdot \vec{v} + \psi\nabla \cdot \vec{v}$$

b) For the scalar function

$$f(r, \theta, \phi) = \frac{\exp(-\lambda r)}{r}$$

Compute ∇f and $\nabla^2 f$. [Hint: Use the result of part a]

- 4)* By calculating the curl of the following vector functions, classify them as conservative or nonconservative:
 - a) $\vec{v}(r,\theta,\phi) = r^2 \sin \theta \hat{r} + 4r^2 \cos \theta \hat{\theta} + r^2 \tan \theta \hat{\phi}$ b) $\vec{v}(x,y,z) = x^2 \hat{x} + xy \hat{y} + z^2 \hat{z}$
- 5)* Let $\Phi(\vec{r})$ be a scalar function satisfying

$$\nabla^2 \Phi = 0$$

in some volume V. Additionally it is known that $\Phi = 0$ at the surface S of the volume V. Prove that $\Phi = 0$ everywhere inside the volume V. [Hint: consider the integral $I = \int_V |\nabla \Phi|^2 dV$ and try to prove that it is zero subject to the above conditions.]