ELL212 - Tutorial 2 Solutions, Sem II 2015-16

1) Assume the voltage and current at a point z on the transmission line to be of the form

$$
\begin{aligned}
& V(z, t)=\left(V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{-j \beta z}\right) e^{j \omega t} \\
& I(z, t)=\left(\frac{V_{0}^{+}}{Z_{0}} e^{-j \beta z}-\frac{V_{0}^{+}}{Z_{0}} e^{-j \beta z}\right) e^{j \omega t}
\end{aligned}
$$

The unknowns V_{0}^{+}and V_{0}^{-}can be evaluated using the boundary conditions at the two ends of the TL

$$
\begin{aligned}
& V_{s} \exp (j \omega t)=V(0, t) \\
& V(l, t)=R_{L} I(l, t)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& V_{s}=V_{0}^{+}+V_{0}^{-} \\
& V_{0}^{-}=V_{0}^{+}\left(\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}\right) e^{-2 j \beta l}
\end{aligned}
$$

Also,

$$
V_{L}=V(l, t)
$$

Therefore,

$$
V_{L}=\frac{R_{L}}{R_{L} \cos (\beta l)+j Z_{0} \sin (\beta l)} V_{s}
$$

(Note that at low frequencies, $\beta l=\frac{\omega l}{c}$ is very small and thus $\cos (\beta l) \approx 1, \sin (\beta l) \approx 0, V_{L} \approx \frac{R_{L}}{R_{L}+0} V_{S} \approx V_{S}$ and the transmission line behaves like a short)
2) This circuit is equivalent to

Fig. 1. Equivalent Circuit of Q2

$$
Z_{e f f}=50\left(\frac{25+j 50 \tan (360 \times 2.6)}{50+j 25 \tan (360 \times 2.6)}\right)=(22.3186-j 7.3812) \Omega
$$

The current through the 100Ω resistor $\left(I_{1}\right)$:

$$
\begin{gathered}
I_{1}=0.5\left(\frac{22.3186-j 7.3812}{122.3186-j 7.3812}\right) A=(0.0927-j 0.02458) A \\
P_{R 1}=\left|I_{1}\right|^{2} \times 100=0.799 W
\end{gathered}
$$

The voltage, V_{s} across the current source can be calculated as:

$$
\begin{aligned}
& V_{s}=I_{1} \times 100=9.27-j 2.458 \\
& P_{s}=R e\left[V_{s} I_{s}^{*}\right]=9.27 \times 0.5=4.635 \mathrm{~W} \text { and } P_{R 2}=P_{s}-P_{R 1}=3.836 \mathrm{~W}
\end{aligned}
$$

3) The equivalent circuit is shown in Fig. 2:
Z_{1} is the equivalent impedance of the short circuit stub attached between A and ground.
Therefore

$$
Z_{1}=j Z_{0} \tan \left(\beta d_{1}\right)=j 300 \tan \left(\frac{2 \pi}{100} 10\right)=j 217.963
$$

Fig. 2. Equivalent Circuit of Q3

Also

$$
\begin{aligned}
& Z_{0}=Z_{1} \| Z_{2}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}} \\
& Z_{2}=\frac{Z_{1} Z_{0}}{Z_{1}-Z_{0}}=\frac{300 \times j 217.963}{j 217.98-300}=(103.64-j 142.658) \Omega
\end{aligned}
$$

Since,

$$
Z_{2}=Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan (\beta d)}{Z_{0}+j Z_{L} \tan (\beta d)}\right)
$$

Z_{L} can be calculated as:

$$
Z_{L}=Z_{0}\left(\frac{Z_{2}-j Z_{0} \tan (\beta d)}{Z_{0}-j Z_{2} \tan (\beta d)}\right)
$$

4) Equivalent circuit

Fig. 3. Equivalent Circuit of Q4

$$
\begin{aligned}
Z_{1} & =j Z_{0} \tan \left(\beta d_{1}\right) \\
Z_{2} & =Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan (\beta d)}{Z_{0}+j Z_{L} \tan (\beta d)}\right)
\end{aligned}
$$

Thus

$$
Z_{0}=j Z_{0} \tan \left(\beta d_{1}\right)+Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan (\beta d)}{Z_{0}+j Z_{L} \tan (\beta d)}\right)
$$

Separating the real and imaginary parts of this equation:

$$
\begin{aligned}
& 1=\frac{Z_{L} Z_{0}\left(1+\tan ^{2}(\beta d)\right)}{Z_{0}^{2}+Z_{L}^{2} \tan ^{2}(\beta d)} \\
& \tan \left(\beta d_{1}\right)=\frac{\left(Z_{L}^{2}-Z_{0}^{2}\right) \tan (\beta d)}{Z_{0}^{2}+Z_{L}^{2} \tan ^{2}(\beta d)}
\end{aligned}
$$

which can be solved to obtain

$$
\begin{aligned}
& \tan (\beta d)= \pm \sqrt{\frac{Z_{0}}{Z_{L}}} \\
& \tan \left(\beta d_{1}\right)=\mp\left(\sqrt{\frac{Z_{0}}{Z_{L}}}-\sqrt{\frac{Z_{L}}{Z_{0}}}\right)
\end{aligned}
$$

