ELL212 - Tutorial 2, Sem II 2015-16

1) For the transmission line represented in Fig.1, calculate the potential developed across the 80Ω resistor for (a) $f=60 \mathrm{~Hz}$, (b) $f=1 \mathrm{MHz}$, (c) Repeat part (a) with length $10^{7} \mathrm{~m}$ instead of 80 m .

Fig. 1. Problem Q1
2) Calculate the average power dissipated by each resistor in the circuit shown in Fig. 2 .

Fig. 2. Problem Q2
3) The lossless line shown in Fig. 3 is operating with $\lambda=100 \mathrm{~cm}$ and $Z_{0}=300 \Omega$. If $d_{1}=10 \mathrm{~cm}$, $d=25 \mathrm{~cm}$, and the line is matched to the left of the stub, what is Z_{L} ?
4) The two-wire lines shown in Fig. 4 are all lossless and have $Z_{0}=200 \Omega$. Find the possible values of d and d_{1} to provide a matched load if $\lambda=100 \mathrm{~cm}$. (Note that the unshaded and shaded conductor are both parts of the same transmission line, for example they can be the inner and outer conductor of a coaxial cable.)

Fig. 3. Problem Q3

Fig. 4. Problem Q4

