ELL212 - Tutorial 1 Solutions, Sem II 2015-16

Q.1: Consider a monochromatic wave function given by

$$
\psi(\vec{r})=A(\vec{r}) \cos (\omega t+\theta(\vec{r}))
$$

Show that if $\psi(\vec{r})$ satisfies the wave-equation then so does

$$
\xi(\vec{r})=A(\vec{r}) \exp [j\{\theta(\vec{r})+\omega t\}]
$$

and vice-versa.
A.1: The wave equation is given by

$$
\begin{gathered}
\nabla^{2} \psi(\vec{r}, t)=\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} \\
\nabla^{2}(A(\vec{r}) \cos (\omega t+\theta(\vec{r})))=-\frac{\omega^{2}}{c^{2}}(A(\vec{r}) \cos (\omega t+\theta(\vec{r})))
\end{gathered}
$$

if we break the trignometric terms of

$$
\cos (\omega t+\theta(\vec{r}))
$$

and equate with the corresponding terms on both sides of above quation, we get

$$
\begin{gathered}
\nabla^{2}\left(A(\vec{r}) \cos (\theta(\vec{r}))=-\frac{\omega^{2}}{c^{2}} A(\vec{r}) \cos (\theta(\vec{r})\right. \\
\nabla^{2}\left(A(\vec{r}) \sin (\theta(\vec{r}))=-\frac{\omega^{2}}{c^{2}} A(\vec{r}) \sin (\theta(\vec{r})\right. \\
\nabla^{2}(A(\vec{r}) \exp (j \theta(\vec{r})))=\nabla^{2}\left(A(\vec{r}) \cos (\theta(\vec{r}))+j \nabla^{2}(A(\vec{r}) \sin (\theta(\vec{r})))\right. \\
\left.\nabla^{2}(A(\vec{r}) \exp (j \theta(\vec{r})))=-\frac{\omega^{2}}{c^{2}} A(\vec{r}) \exp (j \theta(\vec{r}))\right)
\end{gathered}
$$

Hence $\xi(\vec{r})=A(\vec{r}) \exp [j\{\theta(\vec{r})+\omega t\}]$ satisfies the wave equation too.
Q.2: Consider the two dimensional wave equation in cylindrical coordinates:

$$
\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \psi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}
$$

Obtain an expression for an azimuthally symmetric (i.e. ϕ independant) cylindrical wave at frequency ω for large ρ. (Hint: Use the substitution $\psi(\rho, t)=f(\rho, t) / \sqrt{\rho})$.
A.2: The wave equation at large ρ is given by

$$
\begin{gathered}
\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \psi}{\partial \rho}\right)=-\frac{\omega^{2}}{c^{2}} \psi \\
\frac{1}{\rho}\left(\rho \frac{\partial^{2} \psi}{\partial \rho^{2}}+\frac{\partial \psi}{\partial \rho}\right)=-\frac{\omega^{2}}{c^{2}} \psi
\end{gathered}
$$

To first order, $\psi \sim \exp (-j \omega \rho / c), \exp (j \omega \rho / c)$

$$
\psi(\rho, t)=f(\rho) \exp \left(-j \frac{\omega \rho}{c}\right)
$$

After computing $\left(\frac{\partial \psi}{\partial \rho}\right)$ and $\left(\rho \frac{\partial^{2} \psi}{\partial \rho^{2}}\right)$ and putting in the main equation, we get

$$
\frac{\partial^{2} f(\rho)}{\partial \rho^{2}}-2 j \frac{\omega}{c} \frac{\partial f(\rho)}{\partial \rho}+\frac{1}{\rho} \frac{\partial f(\rho)}{\partial \rho}-j \frac{\omega f(\rho)}{c \rho}=0
$$

using approximation considering ρ to be very large

$$
\frac{\partial f(\rho)}{\partial \rho}+\frac{f(\rho)}{2 \rho}=0
$$

Solving the above differential equation we get $f(\rho)=\frac{K}{\sqrt{\rho}}$, where K is some constant

$$
\begin{gathered}
\tilde{\psi}=\frac{K}{\sqrt{\rho}} \exp (j \omega t) \exp \left(-j \frac{\omega \rho}{c}\right) \\
\psi=\operatorname{Re}(\tilde{\psi})=\frac{K}{\sqrt{\rho}} \cos \left(\omega t-\frac{\omega \rho}{c}\right)+\phi(c)
\end{gathered}
$$

Q.3: Approximate distributed circuit models of (lossless) a lossless transmission operating in high frequency modes is shown in fig.1. Note that L has units $\mathrm{H} \cdot \mathrm{m}, C$ has units $\mathrm{F} \cdot \mathrm{m}, L_{0}$ has units H / m and C_{0} has units F / m. Obtain expressions for the propagation constant β and the characteristic impedance Z_{0} of the line for both circuits at frequency ω.

(a)

(b)

Fig. 1. Distributed circuit models for Q. 4
A.3: By considering the voltage and current on an infinresimal section of transmission line, the inductance and capacitance of the infinitesimal section of the line are $\mathrm{L} \Delta z$ and $\mathrm{C} \Delta z$ respectively.

Since the transmission medium is lossless, the differential equation govering voltage and current can be written as $\frac{\partial^{2} V}{\partial z^{2}}=\beta^{2} V$ OR $\frac{\partial^{2} I}{\partial z^{2}}=\beta^{2} I$

1) Image $Q .3 a$

Transmission line equations:

$$
\begin{gathered}
V(z)-j\left(\omega L_{0}-\frac{1}{\omega c}\right) \partial z I(z)=V(z+\partial z) \\
-j\left(\omega L_{0}-\frac{1}{\omega c}\right) I(z)=\frac{\partial V}{\partial z} \\
V(z)=\frac{1}{j \omega C_{0} \partial z}(I(z)-I(z+\partial z)) \\
V(z)=-\frac{1}{j \omega C_{0}} \frac{\partial I}{\partial z}
\end{gathered}
$$

Using the two above differential equation of I and V and comparing with the differential equations of voltage and current we get the value of Propagation constant β

$$
\left.\beta=\sqrt{(} \omega^{2} L_{0} C_{0}\left(1-\frac{1}{\omega^{2} L_{0} C}\right)\right)
$$

Characteristic Impedance calculation:

$$
\begin{aligned}
\frac{\partial I}{\partial z} & =-j \beta I(z)=-j \omega C_{0} V(z) \\
Z_{0}=\frac{V}{I} & \left.=\frac{\beta}{\omega C_{0}}=\sqrt{(} \frac{L_{0}}{C_{0}}\left(1-\frac{1}{\omega^{2} L_{0} C}\right)\right)
\end{aligned}
$$

2) Image $Q .3 b$

Transmission line equations:

$$
\begin{gathered}
V(z)-j \omega L_{0} \partial z-I(z)=V(z+\partial z) \\
-j \omega L_{0} I(z)=\frac{\partial V}{\partial z} \\
V(z)=-\frac{j \omega L}{1-\omega^{2} L C_{0}} \frac{\partial I}{\partial z}
\end{gathered}
$$

Using the two above differential equation of I and V and comparing with the differential equations of voltage and current we get the value of Propagation constant β

$$
\left.\beta=\sqrt{(} \omega^{2} L_{0} C_{0}\left(1-\frac{1}{\omega^{2} L C_{0}}\right)\right)
$$

Characteristic Impedance calculation:

$$
\begin{gathered}
\frac{\partial V}{\partial z}=-j \beta V=-j \omega L_{0} I(z) \\
\left.Z_{0}=\frac{V}{I}=\frac{\omega L_{0}}{\beta}=\sqrt{(} \frac{L_{0}}{C_{0}\left(1-\frac{1}{\omega^{2} L C_{0}}\right)}\right)
\end{gathered}
$$

Q.4: Consider a one dimensional wave satisfying the wave equation:

$$
\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}
$$

and the following boundary conditions:

$$
\psi(x=0, t)=\psi_{0} \exp \left(-\frac{t^{2}}{\tau^{2}}\right) \text { and }\left.\frac{\partial \psi(x, t)}{\partial x}\right|_{x=0}=\frac{\psi_{0} t}{2 v \tau^{2}} \exp \left(-\frac{t^{2}}{4 \tau^{2}}\right)
$$

Also assume that the function $\psi(x, t)$ is fourier transformable with respect to time t at every x. Obtain an expression for $\psi(x, t)$ for all x and t.
A.4: The wave equation is given by $\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}$

$$
\psi(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \psi(\tilde{x}, \omega) \exp (j \omega t) d \omega
$$

Calculating $\frac{\partial^{2} \psi}{\partial x^{2}}$ and $\frac{\partial^{2} \psi}{\partial t^{2}}$ from the above equation and using the given one dimensional wave equation, we get

$$
\frac{\partial^{2} \tilde{\psi}}{\partial x^{2}}=\frac{\omega^{2}}{v^{2}} \tilde{\psi}
$$

After solving the above differential equation, we get

$$
\psi(\tilde{x}, \omega)=A(\omega) \exp \left(j \frac{\omega x}{v}\right)+B(\omega) \exp \left(-j \frac{\omega x}{v}\right)
$$

Given the boundary condition, we can easily find out the values of $A(\omega)$ and $B(\omega)$ which is as follows

$$
\begin{aligned}
& B(\omega)=\frac{\psi_{0} \tau \sqrt{\pi}}{2}\left(2 \exp \left(-\omega^{2} \tau^{2}\right)+\exp \left(-\frac{\omega^{2} \tau^{2}}{4}\right)\right) \\
& A(\omega)=\frac{\psi_{0} \tau \sqrt{\pi}}{2}\left(\exp \left(-\frac{\omega^{2} \tau^{2}}{4}\right)-2 \exp \left(-\omega^{2} \tau^{2}\right)\right)
\end{aligned}
$$

Thereafter calculating $\psi(\tilde{x}, \omega)$ we can put it in the main equation of $\psi(x, t)$ and can easily obtain the desired expression

$$
\psi(x, t)=\frac{\psi_{0}}{2} \exp \left(-\frac{\left(t+\frac{x}{v}\right)^{2}}{\tau^{2}}\right)+\frac{\psi_{0}}{2} \exp \left(-\frac{\left(t-\frac{x}{v}\right)^{2}}{\tau^{2}}\right)-\frac{\psi_{0}}{2} \exp \left(-\frac{\left(t+\frac{x}{v}\right)^{2}}{4 \tau^{2}}\right)+\frac{\psi_{0}}{2} \exp \left(-\frac{\left(t-\frac{x}{v}\right)^{2}}{4 \tau^{2}}\right)
$$

