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ELL212 - Tutorial 1 Solutions, Sem II 2015-16

Q.1: Consider a monochromatic wave function given by

ψ(~r) = A(~r) cos(ωt+ θ(~r))

Show that if ψ(~r) satisfies the wave-equation then so does

ξ(~r) = A(~r) exp[j{θ(~r) + ωt}]

and vice-versa.
A.1: The wave equation is given by

∇2ψ(~r, t) =
1

c2
∂2ψ

∂t2

∇2(A(~r) cos(ωt+ θ(~r))) = −ω
2

c2
(A(~r) cos(ωt+ θ(~r)))

if we break the trignometric terms of

cos(ωt+ θ(~r))

and equate with the corresponding terms on both sides of above quation, we get

∇2(A(~r) cos(θ(~r)) = −ω
2

c2
A(~r) cos(θ(~r)

∇2(A(~r) sin(θ(~r)) = −ω
2

c2
A(~r) sin(θ(~r)

∇2(A(~r) exp(jθ(~r))) = ∇2(A(~r) cos(θ(~r)) + j∇2(A(~r) sin(θ(~r)))

∇2(A(~r) exp(jθ(~r))) = −ω
2

c2
A(~r) exp(jθ(~r)))

Hence ξ(~r) = A(~r) exp[j{θ(~r) + ωt}] satisfies the wave equation too.

Q.2: Consider the two dimensional wave equation in cylindrical coordinates:

1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1

ρ2
∂2ψ

∂φ2
=

1

v2
∂2ψ

∂t2

Obtain an expression for an azimuthally symmetric (i.e. φ independant) cylindrical wave at frequency ω for large
ρ. (Hint: Use the substitution ψ(ρ, t) = f(ρ, t)/

√
ρ).

A.2: The wave equation at large ρ is given by

1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
= −ω

2

c2
ψ

1

ρ

(
ρ
∂2ψ

∂ρ2
+
∂ψ

∂ρ

)
= −ω

2

c2
ψ

To first order, ψ ∼ exp(−jωρ/c), exp(jωρ/c)

ψ(ρ, t) = f(ρ) exp(−j ωρ
c

)

After computing
(
∂ψ
∂ρ

)
and

(
ρ∂

2ψ
∂ρ2

)
and putting in the main equation, we get

∂2f(ρ)

∂ρ2
− 2j

ω

c

∂f(ρ)

∂ρ
+

1

ρ

∂f(ρ)

∂ρ
− j ωf(ρ)

cρ
= 0

using approximation considering ρ to be very large

∂f(ρ)

∂ρ
+
f(ρ)

2ρ
= 0
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Solving the above differential equation we get f(ρ) = K√
ρ , where K is some constant

ψ̃ =
K
√
ρ

exp(jωt) exp(−j ωρ
c

)

ψ = Re(ψ̃) =
K
√
ρ

cos(ωt− ωρ

c
) + φ(c)

Q.3: Approximate distributed circuit models of (lossless) a lossless transmission operating in high frequency modes is
shown in fig.1. Note that L has units H·m, C has units F·m, L0 has units H/m and C0 has units F/m. Obtain
expressions for the propagation constant β and the characteristic impedance Z0 of the line for both circuits at
frequency ω.

(a) (b)

Fig. 1. Distributed circuit models for Q.4

A.3: By considering the voltage and current on an infinresimal section of transmission line, the inductance and capaci-
tance of the infinitesimal section of the line are L∆z and C∆z respectively.

Since the transmission medium is lossless, the differential equation govering voltage and current can be written as
∂2V
∂z2 = β2V OR ∂2I

∂z2 = β2I

1) Image Q.3a

Transmission line equations:

V (z)− j(ωL0 −
1

ωc
)∂zI(z) = V (z + ∂z)

−j(ωL0 −
1

ωc
)I(z) =

∂V

∂z

V (z) =
1

jωC0∂z

(
I(z)− I(z + ∂z)

)
V (z) = − 1

jωC0

∂I

∂z

Using the two above differential equation of I and V and comparing with the differential equations of voltage and
current we get the value of Propagation constant β

β =
√

(ω2L0C0(1−
1

ω2L0C
))

Characteristic Impedance calculation:

∂I

∂z
= −jβI(z) = −jωC0V (z)

Z0 =
V

I
=

β

ωC0
=
√

(
L0

C0
(1− 1

ω2L0C
))

2) Image Q.3b
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Transmission line equations:

V (z)− jωL0∂z − I(z) = V (z + ∂z)

−jωL0I(z) =
∂V

∂z

V (z) = − jωL

1− ω2LC0

∂I

∂z

Using the two above differential equation of I and V and comparing with the differential equations of voltage and
current we get the value of Propagation constant β

β =
√

(ω2L0C0(1−
1

ω2LC0
))

Characteristic Impedance calculation:

∂V

∂z
= −jβV = −jωL0I(z)

Z0 =
V

I
=
ωL0

β
=
√

(
L0

C0(1− 1
ω2LC0

)
)

Q.4: Consider a one dimensional wave satisfying the wave equation:

∂2ψ

∂x2
=

1

v2
∂2ψ

∂t2

and the following boundary conditions:

ψ(x = 0, t) = ψ0 exp

(
− t2

τ2

)
and

∂ψ(x, t)

∂x

∣∣∣∣
x=0

=
ψ0t

2vτ2
exp

(
− t2

4τ2

)
Also assume that the function ψ(x, t) is fourier transformable with respect to time t at every x. Obtain an expression
for ψ(x, t) for all x and t.

A.4: The wave equation is given by ∂2ψ
∂x2 = 1

v2
∂2ψ
∂t2

ψ(x, t) =
1

2π

∫ ∞
−∞

˜ψ(x, ω) exp(jωt)dω

Calculating ∂2ψ
∂x2 and ∂2ψ

∂t2 from the above equation and using the given one dimensional wave equation, we get

∂2ψ̃

∂x2
=
ω2

v2
ψ̃

After solving the above differential equation, we get

˜ψ(x, ω) = A(ω) exp(j
ωx

v
) +B(ω) exp(−j ωx

v
)

Given the boundary condition, we can easily find out the values of A(ω) and B(ω) which is as follows

B(ω) =
ψ0τ
√
π

2

(
2 exp(−ω2τ2) + exp(−ω

2τ2

4
)

)
A(ω) =

ψ0τ
√
π

2

(
exp(−ω

2τ2

4
)− 2 exp(−ω2τ2)

)
Thereafter calculating ˜ψ(x, ω) we can put it in the main equation of ψ(x, t) and can easily obtain the desired
expression

ψ(x, t) =
ψ0

2
exp(−

(t+ x
v )2

τ2
) +

ψ0

2
exp(−

(t− x
v )2

τ2
)− ψ0

2
exp(−

(t+ x
v )2

4τ2
) +

ψ0

2
exp(−

(t− x
v )2

4τ2
)


