ELL212 - Tutorial 1, Sem II 2015-16

1) Consider a monochromatic wave function given by

$$
\psi(\vec{r})=A(\vec{r}) \cos (\omega t+\theta(\vec{r}))
$$

Show that if $\psi(\vec{r})$ satisfies the wave-equation then so does

$$
\xi(\vec{r})=A(\vec{r}) \exp [j\{\omega t+\theta(\vec{r})\}]
$$

and vice-versa.
2) Consider the two dimensional wave equation in cylindrical coordinates:

$$
\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \psi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}
$$

Obtain an expression for an azimuthally symmetric (i.e. ϕ independant) cylindrical wave at frequency ω for large ρ. (Hint: Use the substitution $\psi(\rho, t)=f(\rho, t) / \sqrt{\rho})$. Compare with the case of a spherical plane wave.
3) Approximate distributed circuit models of (lossless) a lossless transmission operating in high frequency modes is shown in fig. 1. Note that L has units $\mathrm{H} \cdot \mathrm{m}, C$ has units $\mathrm{F} \cdot \mathrm{m}, L_{0}$ has units H / m and C_{0} has units F / m. Obtain expressions for the propagation constant β and the characteristic impedance Z_{0} of the line for both circuits at frequency ω.

(a)

(b)

Fig. 1. Distributed circuit models for Q3
4) *Consider a one dimensional wave satisfying the wave equation:

$$
\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}
$$

and the following boundary conditions:

$$
\psi(x=0, t)=\psi_{0} \exp \left(-\frac{t^{2}}{\tau^{2}}\right) \text { and }\left.\frac{\partial \psi(x, t)}{\partial x}\right|_{x=0}=\frac{\psi_{0} t}{2 v \tau^{2}} \exp \left(-\frac{t^{2}}{4 \tau^{2}}\right)
$$

Also assume that the function $\psi(x, t)$ is fourier transformable with respect to time t at every x. Obtain an expression for $\psi(x, t)$ for all x and t.

