RADIATION PATTERNS

Radiation Pattern

A mathematical and/or graphical representation of the radiation properties of an antenna, such as the:

- amplitude
- phase
- polarization, etc.
as a function of the angular space coordinates θ, ϕ.

Amplitude Radiation Pattern

- Field Pattern:

A plot of the field (either electric $|\underline{E}|$ or magnetic $|\underline{H}|$) on a linear scale

- Power Pattern:

A plot of the power (proportional to either the electric $|\underline{E}|^{2}$ or magnetic $|\underline{H}|^{2}$ fields) on a linear or decibel ($d B$) scale.

Polar Pattern

Copyright © 2005 by Constantine A. Balanis All rights reserved

Linear Pattern

Fig. 2.3(b)

Copyright © 2005 by Constantine A. Balanis All rights reserved

Chapter 2
Fundamental Parameters of Antennas

2-D Normalized Field $\left|\underline{E}_{n}\right|$ Pattern of a Linear Array

Linear Scale
 $N=10$ elements
 $d=\lambda / 4$ spacing
 HPBW $=38.64^{\circ}$

Fig. 2.2(a)

Chapter 2
Fundamental Parameters of Antennas

2-D Normalized Power $\left|\underline{E}_{n}\right|^{2}$ Pattern of a Linear Arra

Linear Scale
 $N=10$ elements $d=\lambda / 4$ spacing $\mathrm{HPBW}=38.64^{\circ}$

Fig. 2.2(b)

Chapter 2
Fundamental Parameters of Antennas

2-D Normalized Power $\left|\underline{E}_{n}\right|^{2}$ Pattern of a Linear Array

$d B$ Scale
$N=10$ element
$d=\lambda / 4$ spacing
$\mathrm{HPBW}=38.64^{\circ}$

Fig. 2.2(c)

Chapter 2
Fundamental Parameters of Antennas

ISOTROPIC, DIRECTIONAL \& OMNIDIRECTIONAL

Directional Pattern of a Horn

Fix $\theta=\frac{\pi}{2}$:
Non-Directional
Fixed ϕ : Directional

Net: Omnidirectional

E-plane: plane

 containing E-field vector \& direction of max radiation.Also, H-plane

Omnidirectional Pattern

Fig. 2.6
Chapter 2
Fundamental Parameters of Antennas

ANGLES IN 2D \& 3D

Radian

$C=2 \pi r$

Rads $=\frac{C}{r}=\frac{2 \pi r}{r}$

π
r

Copyright © 2005 by Constantine A. Balanis All rights reserved

Fig. 2.10(a)

Chapter 2
Fundamental Parameters of Antennas

Steradian

RADIATION INTENSITY

.. it is the power radiated from the antenna per unit solid angle

$$
\begin{aligned}
& P_{r a d}=\oiint U d \Omega=\oiint S_{r a d} d A \\
& d A=r^{2} \sin \theta d \theta d \phi \\
& \Rightarrow U=r^{2} S_{r a d}
\end{aligned}
$$

Units?

Radiation intensity for an isotropic source? U_{0}

RADIATION INTENSITY

.. it is the power radiated from the antenna per unit solid angle

$$
\begin{aligned}
& P_{r a d}=\oiint U d \Omega=\oiint S_{r a d} d A \\
& d A=r^{2} \sin \theta d \theta d \phi \\
& \Rightarrow U=r^{2} S_{r a d} \\
& U=\frac{r^{2}}{2 \eta}|E|^{2}
\end{aligned}
$$

Compute HPBW, FNBW for $U_{0}=\sin ^{3}(4 \theta)$

DIRECTIVITY

.. the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions.

$$
\begin{gathered}
D=\frac{U(\theta, \phi)}{U_{o}}=\frac{4 \pi U(\theta, \phi)}{P_{r a d}} \\
D_{\max }=D_{o}=\frac{U_{\max }}{U_{o}}=\frac{4 \pi U_{\max }}{P_{\text {rad }}} \\
D(d B)=10 \log _{10}[D(\text { dimensionless })]
\end{gathered}
$$

Copyright © 2005 by Constantine A. Balanis All rights reserved

Chapter 2
Fundamental Parameters of Antennas

DIRECTIVITY OF HERTZ DIPOLE

$$
S_{r a d}=\hat{r} S_{r}=A_{0} \sin ^{2} \theta / r^{2}
$$

So, $U=r^{2} S_{r}=A_{0} \sin ^{2} \theta$
Max radiation along $\theta=\frac{\pi}{2}$, so $U_{\max }=A_{0}$
So, $P_{r a d}=\oiint U d \Omega=A_{0}\left(\frac{8 \pi}{3}\right)$
Giving max directivity as $D_{0}=4 \pi \frac{U_{\max }}{P_{\text {rad }}}=3 / 2$
In general then, directivity as a function of angle is $D=D_{0} \sin ^{2} \theta$

