
HW 2 Solns: EEL760 Antenna Theory & Design∗

Q 1 (a)[2+2] (Method I): ’Physical’ solution ⇒ obtained by considering the reflectivity of the ground
plane.

Let the ray SP have angle θ1, and the ray
SG have angle θ2

The total field is due to direct and reflected rays; i.e.
−→
E =

−→
E1(θ1) +R

−→
E2(θ2)

where E1 and E2 can be simply obtained by the expressions for electric field of a dipole.
2 marks
(Method II) ’Image’ Solution ⇒ we apply the method of images to the problem and remove the
ground plane. Resolve into vertical and horizontal dipoles and construct the image as:

The solution is now obtained as the superpo-
sition of the 2 dipoles−→
E =

−→
E1d +

−→
E2d

(b)[2] The 2 methods are conceptually equivalent using the uniqueness theoram in the half space
above the plane, the boundary conditions are identical -
1. Tangential fields are on the ground plane
2. Fields at ∞ go to 0 (radiation boundary condition)
More precisely, consider a vertical dipole we know that Eθ ∝ sin(θ), Er ∝ cos(θ) (in any zone)

since θ1 + θ2 = π

at point P

{
Eθ1 = Eθ2
Er1 = −Er2 ,
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Radial components ⇒

Only normal components survive

Theta components ⇒

Again only normal components survive

So the method of images also maintains the requirement that fields on the plane are purely normal.
Similar arguments will hold for the horizontal dipole case.

Q 2 a)[2] For a SL, electric field is along φ̂

−→
E SL =

ηk2SIo exp−jkr
4πr

sin(θ)φ̂ (1)

Since the element patterns are along orthogonal directions (and hence different) the principle of
pattern multiplication can’t be used.

b) [2]

In the far-field, we can approximate R ≈ r
(amplitude) R ≈ r − d cos(θ) (phase)

Total far field, then is

−→
E =

ηk2Io exp−jkr
4πr

sin(θ)[ksφ̂+ jl exp jkd cos θθ̂ (2)

c) [2] Beam forming is not possible in this case. this is since the electric fields are orthogonal to
each other, there are no interference effects possible . See above , changing ’d’ only changes Eθ. Eφ
is unchanged.
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d) [4] Yes we can use pattern multiplication now . 2 ways to think about it;

1© A unit composed of 1 SL and 1 HD are arranged N times. Spacing = 2d

2© 2 antenna arrays, each with N elements and spacing = d are being combined.
In both cases, there is an element pattern that can be taken common, hence pattern multiplication
holds.

b) Using approach 1© above, the far field is simply,

−→
E =

−→
E 1 ∗

(
N−1∑
n=0

exp (j2d cos θn)

)

where
−→
E 1 is obtained from eqn 1© earlier

c) Yes, beam forming is possible in this case since multiple antenna patterns are interfering in
each direction (θ̂ and φ̂). Note that the beam forming is limited in this case since the SL and HD
beams are still in different directions.

Q 3 a)[2] The normalized array factor is f(ψ) = sin(5ψ/2)
5 sin(ψ/2)

, where ψ = kd cos(θ) (see text for the simple

derivation)

b)[4]

Here, d = λ/8, α = 3π/4, i.e., radius of visible region = kd = π/4. Visible region is ψ = π/2 to π.
Beam maxima at ψ0 = 3π/5 = π

4
cos θ0 + 3π

4
. cos θ0 = −( 4

π
) 3π( 1

20
) = −(3

5
)θ0 = 126.90. Beam null at

ψ = 4π/5 = π
4

cos θ′ + 3π
4

, cos θ′ = ( 4
π
)( π

20
) = 1/5, θ′ = 78.5o.

Value of amplitudes at maxima = sin(5ψ0/2)
5 sin(ψ0/2)

= 0.247. Note that there are no nulls at θ = 0 or π. One

side lobe exists at θ = 0. Value of side lobe amplitude, ψ′′ = π/4 + 3π/4, f(ψ′′) = sin(5π/2)
5 sin(π/2)

= 0.2
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c)[1] The radiation pattern resembles a broadside pattern since the beam maxima is closer to the
broadside angle of θ = π/2.

Q 4 (a)[2] We have Lhn(r) = λnhn(r), which gives Lmn = 〈hm(r),Lhn(r)〉 = λn〈hm(r),Lhn(r)〉. There-
fore, L is diagonal iff {h} are orthogonal.

(b) [3]~f = F~a. The kth basis function can be expressed in terms of H as ~hk = H~bk. It is known that
Lmn = 〈fm(r), Lfn(r)〉, which gives lmn = (Hbm)TL(Hbn) = bTm(HTLH)bn. But, due to the eigen-
value problem, LH = HΛ, where Λ is a diagonal matrix of eigenvalues. Thus, Lmn = bTm(HTHΛ)bn,
where HTH is identified as the Gramian matrix.
(c) [2] LH = HΛ, and since H is a square non-singular matrix, L = HΛH−1. Thus, Lmn =
〈fm(r), Lfn(r)〉 = 〈fm(r), HΛH−1fn(r)〉 = bTmH

THΛH−1Hbn = bTm(HTHΛ)bn, which is the same as
what we had obtained in (b).

Q 5 (a) [3] See class notes.
(b) [3] The solution involves a simple use of far field approximations of Hankel functions. See, for
example, eqn (22) here: http://web.iitd.ac.in/~uday/notes/fem2dprimer.pdf.

♣
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