MEEP: FDTD solver

Rahul Trivedi, Department of Electrical Engineering, IIT Delhi.

BASIC STEPS

- Define Computational Domain
- Define structure
- Define pml
- Set Resolution
- Define Sources
- Define output quantities

Syntax Structure – Scheme interface

Scheme interface – specifying simulation = setting the values of certain variables.

• General command:

(set! VARIABLE_NAME VALUE)

Define Computational Grid

Define dimensions (1D, 2D or 3D)-OPTIONAL:

(set! Dimensions 2)

Define Lattice:

(set! geometry-lattice (make lattice (size 16 16 no-size)))

Define Structure

Make Blocks of desired sizes and permittivities at desired postions:

(set! geometry (list (make block (center -2 -3.5)(size 12 1 infinity)(material(make dielectric (epsilon 12))))(make block (center 3.5 2)(size 1 12 infinity)(material dielectric (epsilon 12))))))

Sources

- Equivalent Current sources are defined on basis of desired incident field profile
- Three parts to source:
 - Time dependance / Space Dependance
 - Position
 - Orientation
 - Size

Sources (cont.)

Example 1:

(set! sources (list (make source (src (make continuous-src (frequency 0.15))) (component Ez) (center -7 0) (size 0 20) (amplitude 2))))

Example 2:

(set! sources (list (make source (src (make gaussian-src (frequency 0.15)(width 20) (start-time 4)(cutoff 5)))(component Ez) (center -7 0))))

PML

- Set PML thickness: Example 1: (set! pml-layers (list (make pml (thickness 0.5))))
 - Example 2 (For 1D simulation):
 - (set! pml-layers (list (make pml
 (thickness 0.01)(side High))(make pml
 (thickness 1.0)(side Low))))

Resolution & Output

• Resolution:

(set! Resolution 50)

• Output:

(run-until 1000 (at-beginngin outputepsilon)(at-end output-efield-z))