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A new method, based on an iterative procedure, for solving the 
two-dimensional inverse scattering problem is presented. This 
method employs an equivalent Neumann series solution in each 
iteration step. The purpose of the algorithm is to provide a general 
method to solve the two-dimensional imaging problem when the Born 
and the Rytov approximations break down. Numerical simulations 
were calculated for several cases where t h e  conditions for the first 
order Born approximation were not satisfied. The results show that in 
both high and low frequency cases, good reconstructed profiles and 
smoothed versions of the original profiles can be obtained for 
smoothly varying permittivity profiles (lossless) and discontinuous 
profiles (lossless), respectively. A limited number of measurements 
around the object at a single frequency with four to eight plane 
incident waves from different directions are used. The method pro- 
posed in this article could easily be applied to the three-dimensional 
inverse scattering problem, if computational resources are available. 

1. INTRODUCTION 
It is well recognized that electromagnetic imaging has several 
potential advantages over other techniques. Of particular 
interest is the ability to image parameters such as dielectric 
constant and conductivity over a wide range of frequencies. It 
can provide additional information which could be com- 
plementary to that obtained by other imaging techniques. 
Furthermore, electromagnetic imaging is of interest to various 
disciplines such as medical imaging, geophysical explorations, 
remote sensing, and nondestructive testing. 

In electromagnetic imaging, diffraction effects are im- 
portant and cannot be neglected without decreasing the qual- 
ity of the imaging. In weak scattering cases, the diffraction 
tomography (DT) approach has been introduced and investi- 
gated within the framework of the Born and the Rytov 
approximations [l-41, where the diffraction effects are sup- 
posed to be weak but not negligible. Unfortunately these 
conditions are not frequently satisfied in practical problems. 
The limitations of the Born and the Rytov approximations 

have been investigated by Keller [ 5 ] ,  and Slaney, Kaki, and 
Larsen [6 ] .  To consider the effects of strong diffraction, the 
nonlinear integral equation of inverse scattering problems has 
to be solved without the Born approximation. 

Although intensive investigations are being undertaken on 
the inverse scattering theory, few solutions have been re- 
ported for the reconstruction of the dielectric distribution in 
higher dimensional cases in the literature. Wolf [7] proposed a 
method for reconstructing permittivity distributions of objects 
from their holograms taken at different angles of irradiation. 
Using the time domain analysis, Tijhuis [8] proposed an 
iterative technique for one-dimensional permittivity distribu- 
tion reconstruction. An iterative procedure called the dis- 
torted Born approximation which is equivalent to the Newton 
iteration method had been proposed by Chew and Chuang [9] 
and Habashy, Chew, and Chow [lo] for one-dimensional 
reconstruction of permittivity and conductivity distributions. 
Recently, a point matching method was used to reconstruct 
dielectric properties of a three-dimensional model of a human 
body within the framework of the first order approximations 
[ll]. A method called pseudoinverse transformation [12] was 
proposed to reconstruct two-dimensional dielectric distribu- 
tions. In this method, the current source is first reconstructed, 
and then the object is recovered from the current source. 
Consequently, the success of the method depends on the 
solution of the inverse source problem which faces the difficul- 
ties of nonuniqueness because of the existence of nonradiating 
sources [13-151. A double iterative algorithm based on expan- 
sion of both E, and total electric field E was proposed to solve 
the two-dimensional inverse scattering problem by using sine 
basis functions and multiple source technique [16,17]. How- 
ever, the criteria for which the iteration algorithm will yield 
convergent solutions were not clearly mentioned. 

In the present article, an iteration algorithm called the 
modified Newton method is being proposed to solve the 
two-dimensional electromagnetic nonlinear inverse scattering 
problem. The moment method has been employed to solve 
the forward scattered fields. A regularization method has 

ness and instability of the inverse solution. The examples 
given in this article show that the algorithm can be used to 
reconstruct the two-dimensional dielectric distributions in a 
wide range of situations where the Born approximation fails. 
In all examples, final Convergent SOhtiOnS are obtained after a 
few iterations-from five to twelve iterations. 
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II. THEORY AND FORMULATION 
The geometry of the two-dimensional inverse problem is 
shown in Figure 1. The cylindrical medium with an arbitrary 
cross section is inhomogeneous in the xy plane but is homoge- 
neous in the z axis. The receivers are located around the 
cylindrical object at finite discrete points. The object is illumi- 
nated by either a plane wave or the field excited by an 
electrical current line source indicated as T in Figure 1. In the 
present article TM incident waves are supposed in both the 
plane wave and line source cases since the operator involved 
in the basic equation becomes much simpler for TM irradia- 
tion than that for TJ? irradiations [18] and, consequently, 
yields a better accuracy for a scattered field solution [19]. For 
pure TM incident waves, Maxwell's equations reduce to a 
scalar equation 

Here, a normal incident has been assumed, and 

k 2  = w2pn+, y )  

Equation (1) can be cast into an integral equation as 

E*(x7 Y )  = EXx ,  Y )  + / /- G(P - P ' )  

x k&,E,(x', y ' )  dx' dy' 

where S is the scatterer cross section, and 

is the two-dimensional Green's function for a homogeneous 
medium, and 

S E ,  = € , (X ,  y )  - 1 

is the permittivity profile to be recovered. 

p. 

fR 

Figure 1. Geometrical configuration of the problem. 

In weak scattering cases, where the scattered field is much 
smaller than the incident field, the integral equation (2) can 
be solved for &, under the Born or Rytov approximations. 
Unfortunately, the distortions of the reconstructed profile 
become intolerable under the first approximation when the 
criteria are not satisfied. In these cases, the strong diffraction 
effects have to be considered, which means that the inherent 
nonlinearity of the integral equation (2) has to be taken into 
account. In this article, an iterative algorithm called the 
modified Newton method has been proposed to solve the 
integral equation (2) for SE,(X, y ) ,  in which the Green's 
function, C(p - p'), remains unchanged in the iteration pro- 
cedures. The outline of this approach can be summarized in 
the following steps: 

(1) Solve the linearized inverse problem for the first order 
distribution function by using the Born approximation. 

(2) Solve the scattering problem for the field in the object 
and at the observation points with the last recon- 
structed distribution function. 

(3) Substitute the field in the object obtained in step (2) 
into the integrand in the integral equation and solve 
the inverse problem to recover the next order distribu- 
tion function. 

(4) Repeat step (2) and compare the field obtained by the 
reconstructed distribution function and the measured 
data, which in our case are the simulated fields for the 
exact distribution function at the observation points. If 
the difference is less than 5% of the scattered field, the 
iteration terminates, otherwise repeat the cycle until 
the solution is convergent. 

Notice that to implement this algorithm, both the forward and 
inverse solvers are needed. In this article, the point matching 
method with the pulse basis function has been employed to 
solve the forward scattering problem for the scattered field 
inside the object and at the observation points. More atten- 
tion should be paid to the choice of the inverse procedure 
because of the inherent instability and nonuniqueness of the 
inverse scattering problem. 

There are two things involved in solving the linearized 
version of the integral equation (2) for the permittivity profile 
solution in each iteration. In the first step, one must discretize 
the problem to reduce it to an approximate linear algebraic 
representation of the linearized version of integral equation 
(2). Here, the method of basis function expansion [20] has 
been employed. In this method, one needs to choose a set of 
basis functions { f ; ( x ,  y ) }  which could accurately represent the 
behavior of the expected permittivity profile. To simplify the 
numerical calculation and obtain the expected accuracy, we 
choose the pulse function as the basis functions which are the 
same as that we used in the moment method for solving the 
forward scattering problem. Using the pulse basis function 
{ f ; ( x ,  y ) } ,  the unknown permittivity profile 6er(x, y )  can be 
written as 

N 

W X ,  Y )  = c a,f;(x,  Y )  , x ,  Y E s ( 4 )  
r = 1  

Substituting equation (4) into the integral equation (2) and 
considering that the measured data are at the finite points 
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around the object, we have 

N 

m.5, Y , )  = c a, G(P, - P‘)kf;(x’, Y ’ )  
, = l  

X E c ) ( x ’ ,  y ’ )  dx’ dy’ , j = 1 , .  . . , M (5) 

where S, is the domain of the pulse function f , ( x ,  y ) ,  and El‘’ 
is the forward scattering solution of order r ,  when r = 0. It is 
the incident field in the object (the Born approximation). M 
in equation (5) is the number of the independent measure- 
ment data; in our case, it is the product of the number of 
receivers and the number of incident waves or transmitters. 
Equation (5) can be rewritten as a matrix equation 

and K is a M x N matrix whose elements are 

Since Ey’ (x ,  y )  is the solution of the forward problem and the 
same pulse functions are used in both the forward and inverse 
procedures, E c ’ ( x ,  y )  can be approximately expressed as a 
constant in each patch. Hence, the above expression becomes 

where pi is the coordinate of the center of patch i. Notice that 
the integration in the above equation is unchanged for every 
iteration. Thus it can be saved in a matrix for use later. 

In the second step, one needs to solve the linear equation 
(6) for the coefficients of the permittivity profile expansion. It 
is a simple matter, in principle, to solve this system to yield a 
numerical approximation of the solution. On first sight, it 
appears that the system of equations in equation (6) provides 
a simple and robust numerical inversion technique for solving 
the linearized version of equation (2). In practice, however, 
this method faces a severe difficulty because of the ill- 
conditioned matrix K [20,21]. The difficulty in the direct 
inversion method is clearly a consequence of the fact that the 
measured data cannot provide sufficient information on the 
high frequency components of the solution. In other words, 
the measured data imply only that the solution must lie in a 
specified class of the solutions, but they provide no guidance 
as to what unique choice is to be made within that class. 
Furthermore, evanescent waves scattered from the object 
become exponentially small at the receivers. They also ex- 
acerbate the ill conditioning of the problem. The key idea of 
the regularization is to impose an additional constraint on the 
linear system (6) which enables us to select one of the 
possible solutions [20,21]. This constraint is arbitrary, in 
principle, and is not derived from measured data, but might 
be a priori information, i.e., the continuity of the distribution 
function. Although this additional constraint is arbitrary, it 

does provide us with an indirect way of selecting smooth 
profiles. 

In the regularization procedure, instead of solving equation 
(6) for a least square solution, one solves 

(7) IIK-a- b(lZ + yllH-a112 = min 

where y is the regularization parameter, and H is the 
smoothing matrix which is a matrix representation of the 
regularization functional operator. From equation (7), one 
obtains the following matrix equation: 

(8) [Kt - K  + y H ’ - H ] . a  = Kt . b  

where Kt and Hi are the conjugate transpose of K and H, 
respectively. In this article, the zeroth-order regularization, in 
which H is the identity matrix of order N ,  has been used to 
generate results given in the next section. The solution of 
equation (8) is given by 

(9) a =  [ K t - K  + y H t . H ] - ’  - K t  - b  

The choice of the arbitrary parameter y is important in the 
regularization procedure. It must be properly balanced so that 
it is big enough to filter out unstable high frequency compo- 
nents to obtain a stable solution, but not too big so as to filter 
out too many useful frequency components in the solution. 
Generally speaking, however, there is no universal strategy 
for selecting the optimum y, and it is probably best to regard 
y as effectively undefined in any specific case. A safer ap- 
proach is probably to base the selection of y on the numerical 
simulations. 

In practice, the range of y over which the stable solution 
could be obtained also plays an important role in the inverse 
procedure. If the solution is too sensitive to the parameter y, 
i.e., the range of y which gives the stable solution is too small, 
for instance less than one order, then the problem may not be 
properly defined for the inverse solution because the informa- 
tion contained in the data is not enough to recover the profile 
with the expected accuracy. According to our experience, for 
a robust inversion algorithm, the range of y which gives the 
stable solution should, at least, be three to five orders of 
magnitude, for example from lo-’” to lo-? One practical 
point that should be mentioned is that to have a convergent 
solution using the iterative procedure proposed in this article, 
one must have a suitable and robust standard inverse al- 
gorithm which has to pass the test by using numerical simula- 
tions in which the first order Born approximation is valid. 

111. SIMULATIONS AND RESULTS 
In this section, some simulated results are obtained for several 
cases from low frequency to high frequency electromagnetic 
images. Figure 2 shows the relative dielectric distribution 
reconstruction of a sinelike function with a peak value of 11. 
The frequency of the incident wave is 10 MHz. The diameter 
of the object is about one-tenth of the wavelength. Four 
incident plane waves from the different directions are illumi- 
nated in this and following examples except in the examples 
given in Figures 3 and 4 in which eight incident plane waves 
are illuminated. Receivers are located around the object as 
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Figure 2. Reconstruction of a sinlike permittivity distribution with operating frequency at 10 MHz. The peak value of the relative permittivity is 
11. The diameter of the object is one-tenth of the wavelength. (a) is the original distribution, (b) is the result of the first order approximation, 
(c)-(e) are the results from the second iteration to the fourth iteration, and (f) is the final convergent solution after five iterations. 

indicated in Figure 1. The number of receivers in this and the 
following examples varies from 26 to 36 depending on the 
number of unknowns of the problem. The total number of the 
independent measurement which is the product of the number 
of incident waves and the number of the receivers will be from 
104 to 288 for the examples in this section. The number of 
unknowns of the examples given in this section is the number 
of the grid points in the example which varies from 121 to 361 
depending on the size of the scatterer. The measured data for 
all the examples in this section were simulated on the compu- 
ter by solving the forward scattering problem with the original 
dielectric distribution functions for the scattered fields at the 
receivers. 

Figure 2 shows clearly the evolution of the convergence of 
the solution given by the algorithm proposed in the article. 
Figure 2(a) is the original dielectric distribution function and 
Figure 2(b) is the reconstructed result of the first order 
approximation, i.e., the Born approximation. Here, we can 
see that the Born approximation fails for the quantitative 
reconstruction of the dielectric distribution function in this 
case. Figures 2(c) to 2(f) are iteration results from the second 
iteration to the fifth iteration. The solution converges to the 
original dielectric distribution function after five iterations. 
The above example shows that the algorithm works very well 

even when the Born approximation fails to reconstruct the 
distribution function in the low frequency inverse scattering 
problem. 

Figure 3 shows the dielectric distribution reconstruction of 
a sinelike function with the operating frequency at 100 MHz. 
The peak value of the relative dielectric constant in the object 
is 1.80. The diameter of the object in this case is about 1 A .  
Figure 3(a) is the original dielectric distribution and Figure 
3(b) is the reconstructed dielectric distribution of the first 
iteration, i.e., the Born approximation. Figures 3(c) to 3(h) 
are the iteration results from the second iteration to the 
seventh iteration. Figure 3(i) is the final convergent solution 
after eight iterations. 

All simulation results given in this section are obtained on 
the SUN 4/110 workstation by using double precision. As is 
well known, to guarantee the accuracy of the calculated 
scattered field by using the moment method, the mesh density 
has to be about 100/A2 [19]. Due to the limitation of the 
memory provided by the SUN workstation, the maximum size 
of the object we can deal with on the SUN is about 2A in the 
dimension of the diameter. In Figure 4, the operating fre- 
quency is 200 MHz. The diameter of the object is about 2A. In 
this example, eight plane waves are illuminated from the 
different directions. Figure 4(a) is the original dielectric distri- 
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Figure 3. Reconstruction of a sinlike permittivity distribution with operating frequency at 100 MHz. The peak value of the relative permittivity IS 

1.80. The diameter of the object is one wavelength. (a) is the original distribution, (b) is the result of the first order approximation, (c)-(h) are the 
results from the second iteration to the seventh iteration, and (i) is the final convergent solution after eight iterations. 

bution, Figure 4(b) is the reconstructed distribution of the 
first iteration and Figure 4(c) is the convergent solution of the 
dielectric distribution function after twelve iterations. 

Some common features appear in all the examples given 
above. First, the Born approximation fails to give a quantita- 
tive reconstruction of the dielectric distribution in all the 
examples. Second, the final convergent solutions obtained by 
the algorithm proposed in the article converge to the exact 
distribution functions after a few iterations with the negligible 
errors, less than 1% at grid points. The reason for the high 
accuracy of the reconstructed dielectric distributions in the 
above examples is that the property of the constraint we 
employed in the inverse procedure coincides with that of the 
original distribution functions, i.e., continuity of the distribu- 

tion functions. In the next two examples, the dielectric distri- 
bution functions with a discontinuity, i.e., step function, are 
considered. The result will give us an idea on how the 
algorithm works and what we can expect for a discontinuous 
distribution function. 

Figure 5 shows the dielectric distribution reconstruction of 
a step function to illustrate the band-limited nature of the 
algorithm. The regularization employed in the inverse proce- 
dure causes the algorithm to exhibit some low-pass-filtering 
effect. As we see from Figure 5, the final convergent solution 
is, as we expected, a smoothed version of the original distribu- 
tion function. In Figure 5, the operating frequency is 
100 MHz. The diameter of the object is about one wavelength 
and 6er is 0.60. Figure 5(a) gives the original dielectric distri- 
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Figure 4. Reconstruction of a sinlike permittivity distribution with operating frequency at 200 MHz. The peak value of the relative permittivity is 
1.80. The diameter of the object is 2h. (a) is the original distribution, (b) is the result of the first order approximation, and (c) is the final 
convergent solution after 12 iterations. 

Figure 5. Reconstruction of a step permittivity distribution with operating frequency at 100 MHz. The contrast of the relative permittivity is 
1 : 1.60. The diameter of the object is one wavelength. (a) is the original distribution, (b) is the result of the first order approximation, (c)-(h) are 
the results from the second iteration to the seventh iteration, and (i) is the final convergent solution after eight iterations. 
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Figure 6. Reconstruction of a step permittivity distribution with operating frequency at 10 MHz. The contrast of the relative permittivity is 1 : 1 1. 
The diameter of the object is one-tenth of the wavelength. (a) is the original distribution, (b) is the result of the first order approximation, and (c) 
is the final convergent solution after five iterations. 

bution, Figure 5(b) is the result of the first iteration, i.e., the 
Born approximation, and Figures 5(c) to 5(i) are the results 
from the second iteration to the eight iteration, respectively. 
The solution converges after eight iterations. 

Figure 6 shows the similar behavior as that in Figure 5. But 
in this example, the operating frequency is 10MHz. The 
diameter of the object is about one-tenth of the wavelength 
and 8 ~ ,  is 10. Figure 6(a) gives the original dielectric distribu- 
tion, Figure 6(b) gives the result of the first iteration, and 
Figure 6(c) is the final convergent solution after five iterations. 

As the last example, Figure 7 shows that the convergent 
solution of the reconstruction of an asymmetric dielectric 
distribution agrees quite well with the original one. Figure 
7(a) is the original dielectric distribution, and Figure 7(b) is 
the convergent solution of the constructed distribution after 
six iterations. However, because of the band-limited nature of 

the algorithm, computation shows that high spectral frequency 
components of the distribution function were smoothed out. 

Figure 8 gives the relative mean squared error (MSE) of 
the reconstructed permittivity distribution in Figure 3 as a 
function of the iteration steps. The relative MSE is defined as 

where S is the scatterer cross section, c:)(p) is the ith 
iterative reconstructed relative permittivity distribution, and 
~,(p) is the original relative permittivity distribution. 

The numerical simulations we did in this section covered a 
wide range of the electromagnetic inverse scattering applica- 
tions, from low frequency with high contrast cases to high 
frequency with moderate contrast cases. According to the 

(4 (b) 
Figure 7. Reconstruction of an axially asymmetric permittivity distribution with operating frequency at 100 MHz. 'The peak value of the relative 
permittivity is 1.80. The diameter of the object is one wavelength. (a) is the original distribution and (b) is the final convergent solution after six 
iterations. 
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Figure 8. The relative MSE of the reconstructed permittivity distribution in Figure 3 as a function of the iteration steps. 

results of the numerical simulations, we conclude that the 
algorithm can be successfully applied to  the reconstruction of 
the dielectric distribution when the first order Born approxi- 
mation fails for the quantitative reconstruction. The simula- 
tions established that the maximum contrast of the relative 
dielectric constant, in which the algorithm gives correct con- 
vergent solution, is ten times more than that for the Born 
approximation at  the fixed frequency. 

CONCLUSIONS 
A n  algorithm for solving two-dimensional electromagnetic 
nonlinear inverse scattering problems has been proposed. The 
algorithm has been successfully applied to  the reconstruction 
of the dielectric distribution functions in a wide range of 
situations where the Born approximation fails. It turns out, 
according to  the results of the numerical simulations, that the 
maximum contrast of the dielectric constant can be relaxed by 
a factor of ten compared to that for the Born approximation. 
The relaxation of the criteria is important in many areas of the 
inverse scattering applications such as medical imaging, non- 
destructive testing, and geophysical explorations. 

It is very important t o  note that the algorithm proposed in 
this article could be implemented easily in the framework of 
the existing diffraction tomography (DT) by adding a suitable 
forward scattering solver and an iterative procedure because 
the problem has been linearized in each iteration step. The 
combination of the algorithm and conventional diffraction 
tomography provides a potential method to  implement non- 
linear diffraction tomography in the real world of applica- 
tions. 
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