

DORRY, NO IMAGE

AVAILABLE

DORRY, NO

IMAGE

AVAILABLE

EE2025

Lecture 2

Sudharsanan Srinivasan

IMAGE

AVAILABLE

AVAILABLE

IMAGE

AVAILABLE

IMAGE

AVAILABLE

"The unreasonable effectiveness of mathematics"

- E. Wigner

Gauss honored on a German banknote

In 1623 Galileo crafted a famous metaphor that is still often cited by scientists. Nature, he wrote, is a book written in "the language of mathematics". If we cannot understand that language, we will be doomed to wander about as if "in a dark labyrinth".

Estimate the electric field (V/m)

TASK

• Estimate the electric field at (0,3) on the graph paper.

See, Think, Wonder

I see... a girl with her head down, she's frowning, and markers on the table. I think... she's sad and wants to make a picture for someone she is missing. I wonder... where is she? Who is she missing?

Doppler radar

A movement and velocity sensor – cheap and mass producible

See, Think, Wonder

Digital data communication

Why are the traces so wavy?

https://www.servethehome.com/tesla-dojo-custom-ai-supercomputer-at-hc34/

https://www.istockphoto.com/photo/motherboard-detail-close-up-gm140234103-2269342 https://www.integrasources.com/blog/high-speed-pcb-design-guidelines/

High-speed data transport

https://www.protoexpress.com/blog/understanding-signal-integrity/

What are the consequences of a pulse response as shown below?

- Loss
- Ground Bounce
- Reflection noise
- Crosstalk

 $\nabla \cdot \varepsilon_0 \boldsymbol{E} = \rho$

 $\nabla \cdot \mu_{0}H = 0$ $\nabla \times E = -\mu_{0}\frac{\partial H}{\partial t} \qquad \qquad \mu_{0} = 0 \qquad \qquad \oint E \cdot dl = \oint (-\nabla\phi) \cdot dl = 0 \qquad \qquad \text{KVL}$ $\nabla \times H = J + \varepsilon_{0}\frac{\partial E}{\partial t} \qquad \qquad \varepsilon_{0} = 0 \qquad \qquad \nabla \cdot J = \nabla \cdot (\nabla \times H) = 0 \qquad \qquad \text{KCL}$

Transmission lines

Are these the same? (Maybe not at RF)

We use the transmission line model when we want to indicate we care about the speed of the signal.

Rule of thumb: Signal wavelength is more than $\sim 1/10$ th the length of the transmission line.

Models of wires

How do transmission lines affect our signals?

Let's try making a model by looking at the transmission line construction

Coaxial cable

How about a series R and a shunt C?

https://hackaday.com/2018/10/19/the-bnc-connector-and-how-it-got-that-way/ https://en.wikipedia.org/wiki/10BASE2

Simple model

- Used for digital design
- You can do even better by adding more segments

Some more insight

Shorted line: Cannot neglect the flux in long lines

Open line: Substantial capacitance as we anticipated

Telegraph equations

 $\Delta V = - L \Delta X \frac{\partial I}{\partial t} \Rightarrow \Delta V = - L \frac{\partial I}{\partial t}$ $\Delta I = -C \Delta x \frac{\partial V}{\partial t} \qquad \Delta I = -C \frac{\partial V}{\partial t}$ In the limit sx - + 0 $\begin{array}{l} \partial V &= -L\partial I \\ \partial X & \partial t \\ \partial I &= -C\partial V \\ \partial X & \partial t \\ \end{array} \begin{array}{l} Telegraph \\ Equations \\ St \end{array} \end{array}$

Distributed model

