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Abstract— Scheduling algorithms in CDMA packet systems
need to allocate codes and power based on channel state informa-
tion and queue information. For finite queue sizes, the allocated
rate should be less than or equal to the maximum rate required
to clear the whole queue. This ensures that resources are not
under-utilized. Although queue size and head-of-the-line packet
delays have been considered in existing scheduling methods, this
maximum rate constraint has not been explicitly enforced. In
this paper, we propose a new scheduling algorithm incorporating
the maximum rate constraint. The proposed algorithm performs
better in terms of delay distribution and percentage of dropped
packets compared to existing algorithms that do not directly
enforce the maximum rate constraint.

I. INTRODUCTION

Resource allocation algorithms that schedule a single user
in any given time slot were initially proposed in [1], [2]
for CDMA packet systems like CDMA2000 HDR. In these
algorithms, throughput is maximized while achieving some
fairness objective. Proportional fairness is achieved in [1]. In
[2], head-of-the-line packet delay information is used along
with channel state information to derive a throughput opti-
mal single-user scheduling policy named Modified Largest
Weighted Delay First (MLWDF) rule. However, single-user
scheduling algorithms have been shown to be sub-optimal in
[3], [4]. Multi-user scheduling is considered in [3], [4], [5] in
order to maximize the weighted sum of rates. This weighted
sum of rates can capture a large class of fairness measures
including proportional fairness and MLWDF fairness.

When users have an infinite backlog of traffic, the optimal
code and power allocation is proposed in [4]. However,
for a finite queue length case with random packet arrivals,
the scheduling algorithm in [4] may allocate more than the
maximum rate required to clear the queue of a scheduled
user. Since this maximum rate constraint is not explicitly
enforced, resources are under-utilized. Queue information can
be used in the algorithm in [4] by choosing the weights in the
objective function to be the weights from the MLWDF [2], [5]
algorithm. However, this will still not bridge the gap between
the allocated and the actual rate as queue information is not
fully used in defining the MLWDF weights.

In this paper, we propose a new multi-user scheduling
algorithm which takes queue information into account effec-
tively by incorporating the maximum rate constraint in the
objective function and not in the form of weights. Therefore,
the allocated rate to any user is always less than or equal to

the actual maximum rate required to clear the user’s queue.
Incorporating the maximum rate constraint explicitly is shown
to be better than using the queue information in the weights in
terms of the packet delay distributions and the packet dropping
probability. The proposed algorithm is obtained by modifying
the code allocation procedure in the algorithm in [4]. The other
steps from the algorithm in [4] are not modified.

II. SYSTEM MODEL

Assume that there are N users in the cell and each user is
associated with a queue. The arrival distribution of packets
in the queue is assumed to be Bernoulli. Time is divided into
slots and in each slot multi-user scheduling decisions are taken.
The channel is assumed to be constant for the duration of the
slot. We assume a finite queue size. Therefore, packets are
dropped if the queue is full. In our model, we maximize the
weighted sum of rates subject to power, code and maximum
rate constraints.

III. PROBLEM FORMULATION

Our problem formulation is similar to that in [4] except for
the maximum rate constraint enforced by Qi.

maximize
∑

i

wi min(Ri, Qi) (1)

subject to ∑
i

pi ≤ P,
∑

i

ni ≤ N, ni ≤ Ni (2)

ši(ni) ≤
piei

ni
≤ si(ni), (3)

where Ri = ni loge

(
1 + piei

ni

)
,

wi is the weight associated with the ith user,
pi is the power allocated to the ith user,
ni is thenumber of codes allocated to the ith user,
P is the total power,
N is the total number of codes,
Ni is the per user code constraint,
Ri is the rate allocated to the ith user,
Qi is the maximum rate constraint associated with the ith user,
ei is the channel SNR of the ith user,
ši(ni) is the lower bound for SINR, and
si(ni) is the upper bound for SINR.



If the ni’s are allowed to be real numbers, this is a convex
optimization problem and can be readily solved using the
primal-dual method [7]. Also, since Slater’s condition [6] is
satisfied, there will be no duality gap. The Lagrangian is
formulated as

L(λ, µ, n, p) =
∑

i

wi min(Ri, Qi) + λ(P −
∑

i

pi)

+µ(N −
∑

i

ni).

Although the maximum rate constraint has been mentioned
in [4] as a special case of the constraint on SINR, the algorithm
proposed in [4] assumes that the SINR upper and lower bounds
are independent of ni, i.e., they are identical irrespective of the
code allocation. Therefore, maximum rate constraints based on
queue size are not possible.

IV. EXISTING ALGORITHM

The algorithm in [4] can be summarized as follows.
1) For a given value of the Lagrange multiplier λ, find the

optimal code allocation.
2) For a given code allocation, calculate the optimal power

allocation.
3) Using the results of steps 1 and 2, calculate the dual

solution L(λ, µ∗, n∗, p∗).
4) Update λ using golden search, and repeat steps 1 to 3

until the dual solution does not decrease significantly.

V. PROPOSED ALGORITHM

In this paper, we modify only the code allocation in step
1 to incorporate the maximum rate constraint as explained
below. For simplicity, we discuss only the case of ši(ni) = 0
and si(ni) =∞ . The algorithm can be easily generalized for
arbitrary ši(ni) and si(ni).

As mentioned earlier, if the ni’s are allowed to be real
numbers, then we have a convex optimization problem that can
be solved using the primal-dual method. The above problem
can be restated as

max
ni

(
max
pi(ni)

∑
i

wi min(Ri, Qi)

)
, (4)

where the power allocation is optimized for a given code
allocation in the inner maximization.

A. Finding the optimal power for a given optimal code allo-
cation

The optimal power allocation for a given code allocation is
given by [4]

p∗i =
ni

ei
max

(wiei

λ
− 1, 0

)
. (5)

From the complementary slackness condition, and assuming
that λ is not equal to zero, we should have∑

i

p∗i = P. (6)

Substituing the value of p∗i from equation (5), we can find the
optimal value of λ.

B. Optimizing the code allocation

Without the maximum rate constraint, substituting the ex-
pression for p∗i in terms of ni, we get

L(λ, µ, n, p∗) =
∑

i

(winih(wiei, si(ni), ši(ni), λ)− µni)

+λP + µN,
(7)

where

h(wiei, si(ni), ši(ni), λ) =
λ

wiei
− 1− loge

λ

wiei
,

0 ≤ λ < wiei

(8)

Now, maximizing the lagrangian over the set of codes is
equivalent to maximizing the objective function on a code by
code basis resulting in allocation of the code to the best user. In
[4], the objective function grows linearly with ni. For a given
i, the objective function increases by xi for each allocated
code, where xi is defined as

xi =

{
wi

(
λ

wiei
− 1− loge

λ
wiei

)
0 ≤ λ < wiei

0 else.
(9)

Therefore, to allocate codes, the xi’s are arranged in de-
scending order and codes are allocated in that order according
to the per-user code constraint for each i till the codes are
exhausted.

Now, we describe how the maximum rate constraint is
incorporated. If n∗

i can be a real number, we would choose
n∗

i such that

n∗
i ≤

Qi

loge

(
wiei

λ

) 0 ≤ λ < wiei, (10)

We incorporate the integer constraint as follows.

Let Ni,max =

⌊(
Qi

loge

(
wiei

λ

))⌋+ 1, 0 ≤ λ < wiei.

(11)
The number of codes allocated to user i should definitely be
lesser than or equal to Ni,max. Therefore, we can modify the
per-user code constraint based on the queue information using
N∗

i instead of Ni as:

N∗
i = min(Ni, Ni,max), (12)

and
n∗

i ≤ N∗
i . (13)

Now, if N∗
i = Ni for all i, i.e., there is enough backlog

in the queues, then the code allocation in [4] can be used
without any modification. If N∗

i = Ni,max, the code allocation
procedure has to be modifed.

With the maximum rate constraint, the objective function
grows linearly only upto ni = Ni,max. For the first Ni,max−1
codes, the increase in the objective function is xi as defined



before. For the last code, the increase in the objective function
is yi, where

yi =

{
λ
ei
− wi + wi

(
Qi + N∗

i loge

(
λ

wiei

))
0 ≤ λ < wiei

0 else.
.

(14)
Note that yi is always less than or equal to xi. In order to
determine whether to use Ni,max−1 codes for user i or Ni,max

codes for user i, we treat each user as two virtual users with
code constraints Ni,max− 1 and 1. Then, we arrange the xi’s
and yi’s together in descending order and allocate in that order
using the new code constraint, until all the codes are exhausted.

The algorithm is summarized as below:
1) Calculate N∗

i and xi for all the users.
2) If N∗

i = Ni, set yi = 0, else calculate yi using equation
(14).

3) Sort the xi’s and yi’s of all the users together in
descending order.

4) Keep only the values that are ≥ 0.
5) Let Nrem be the remaining number of codes.
6) While Nrem > 0, do

• If the next entry in the truncated sorted list is
one of the xi’s and N∗

i = Ni,max, allocate
min(Ni,max − 1, Nrem) codes. If N∗

i = Ni, then
allocate min(Ni, Nrem) codes as in [4].

• If the next entry in the truncated sorted list is one
of the yi’s, allocate one code.

End.

C. Optimizing over λ

λ∗ = arg min
λ

L(λ, µ∗, n∗, p∗) (15)

The optimal λ is found using the golden search algorithm.
The starting interval is given in [4]. The golden search
algorithm is used to find the global minimum of the convex
function L(λ, µ∗, n∗, p∗) as a function of λ. The golden search
algorithm is summarized as follows:

1) Start with two extreme points, say a and b, and two
intermediate points, say a1 and b1, between a and b.

2) Compute the function at a1 and b1.
3) If the functional value at a1 is less than the function

value at b1, then set b = b1 and repeat the algorithm,
else, set a = a1 and repeat the algorithm from step 1.

4) Stop when the functional value at the intermediate points
are fairly close.

5) At each iteration of the algorithm, we are narrowing
down the interval to get the global minimum.

VI. SIMULATION RESULTS

A downlink of a CDMA packet data system like HSDPA is
assumed with the following simulation parameters. The num-
ber of users is 7. The arrival traffic for the users are assumed
to be independent and identically distributed bernoulli packet
generation processes with probability of packet generation in
each timeslot λ. The packet sizes and the queue buffer size

are 10 kbits and 100 packets respectively. The channel is
assumed to be constant in each timeslot (scheduling interval).
The scheduling interval is 2ms. Each user has an average SNR
of -3 dB with the standard Jakes fading channel model with
a vehicle speed of 25 kmph. The total transmit power in the
system is 11.9 W and the total number of codes in the system
is 15. Each user can be allocated a maximum of 5 codes. The
simulations are for a duration of 10,000 slots (20 sec).

A. Delay Distribution
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Fig. 1. Delay Distribution with equal weights, λ = 0.3
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Fig. 2. Delay Distribution with MLWDF weights, λ = 0.3

The delay of all the transmitted packets for all the users is
calculated and the best and worst case delay distributions are
plotted for the algorithm in [4] and the proposed algorithm.



The result with equal weights and MLWDF weights have
been shown in the Fig 1 and Fig 2 respectively. We observe
that the proposed algorithm gives significantly better delay
performance than the existing algorithm [4] in both cases.

B. Percentage of Dropped Packets
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Fig. 3. Percentage of dropped packets

The percentage of dropped packets for a given arrival traffic
distribution is calculated for all users and has been plotted
in Figure 3 for the user with the maximum packet drop rate.
Again, the proposed algorithm is compared with the algorithm
in [4] for the case of equal weights and for MLWDF weights.
The percentage of dropped packets is lesser in the existing
algorithm when the MLWDF weights are used. However, the
proposed algorithm provides further improvement by com-
pletely eliminating under-utilization of allocated resources.
Therefore, the proposed algorithm can support larger stable
traffic.

C. CDF of Rates

The CDF of rates for a given arrival traffic distribution is
calculated and plotted in Figure 4. Both the actual rate and
the allocated rate for the proposed algorithm are compared
with the algorithm in [4] for the case of equal weights and for
MLWDF weights. Resources are not wasted in the proposed
algorithm as the allocated rate is close to the actual rate.

VII. CONCLUSION

In this paper, we have proposed a scheduling algorithm
optimal for finite queue lengths. The queue information is used
in the objective function as a maximum rate constraint. The
proposed algorithm gives better delay performance and sup-
ports larger arrival traffic with no dropped packets. This work
can also be extended to scheduling in multi-user Orthogonal
Frequency Division Multiplexing systems.
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Fig. 4. CDF of Rates, λ = 0.3
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