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Abstract—Channel estimation techniques for code-division mul-
tiple access (CDMA) systems need to combat multiple access inter-
ference (MAI) effectively. Most existing estimation techniques are
designed for CDMA systems with short repetitive spreading codes.
However, current and next generation wireless systems use long
spreading codes whose period is much larger than the symbol du-
ration. In this paper, we derive the maximum likelihood channel es-
timate for long code CDMA systems over multipath channels using
training sequences and approximate it using an iterative algorithm
to reduce the computational complexity in each processing window.
The asymptotic convergence of the mean of the iterative estimate
to the actual channel is also shown. The effectiveness of the iter-
ative channel estimator is demonstrated in terms of squared error
in estimation as well as the bit error rate performance of a multi-
stage detector based on the channel estimates. Finally, the proposed
iterative channel estimation technique is extended to track slowly
varying multipath fading channels using decision feedback. Thus,
an MAI resistant multiuser channel estimate with reasonable com-
putational complexity is derived for long code CDMA systems over
multipath fading channels.

I. I NTRODUCTION

Code-division multiple access (CDMA) systems are in-
herently interference limited. Receivers can combat mul-
tiple access interference (MAI) by using multiuser chan-
nel estimation, detection and decoding algorithms. Sev-
eral multiuser algorithms have been proposed for chan-
nel estimation in [1], [2], [3], [4], [5], [6]. These algo-
rithms are developed for CDMA systems with short re-
peating (every symbol) spreading codes for the various
users. However, spreading codes used in practical CDMA
systems have a period much larger than the symbol dura-
tion (calledlong spreading codes). Therefore, most of the
existing algorithms are either inapplicable or need pro-
hibitive computational resources.

Recently, some channel estimation algorithms have
been proposed in [7], [8], [9] for long code CDMA sys-
tems. The techniques in [7] and [9] are based on the
knowledge of the spreading sequences, channel estimates
and bits of the interfering users, and they use the inter-
ference cancellation and the minimum mean squared er-
ror (MMSE) approach, respectively. In [8], an acquisi-
tion scheme (for a single user entering the system) that
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uses the knowledge of the spreading sequence and delays
of the interfering users (who have already been acquired)
but not their bits is developed. This leads to an estimator
similar in complexity to the linear decorrelating detector.

In our paper, we develop the multiuser maximum like-
lihood channel estimation algorithm given the knowledge
of the bits of all the users (training sequences or decision
feedback) and approximate the solution directly using an
iterative algorithm. In our approach, we update the chan-
nel estimates of all the users all the time either using train-
ing bits or using decision feedback from the detector and
do not consider users to be acquired (since the channel is
time-varying). The iterative approach allows the compu-
tation of the channel estimate using matrix multiplications
during each processing window and spreads the computa-
tion over the length of the preamble. Thus, this algorithm
has reasonable complexity and should be implementable
in practice. Also, we estimate the effective channel re-
sponse of all the users simultaneously as a single vector
and use it directly in detection instead of estimating the
delays and amplitudes of each path separately [10].

II. SYSTEM MODEL

We consider aK user asynchronous direct sequence
CDMA system with long spreading codes. The spreading
sequence corresponding tobk;i, theith bit of thekth user,
is denoted byck;i(t) and consists ofN chips (spread-
ing gain). The corresponding discrete chip sequence is
denoted by[ck;i[1] : : : ck;i[N ]].The transmitted signal of
thekth user corresponding to an information sequence of
lengthL is given in baseband format by

sk(t) =
p
Ek

LX
i=1

bk;ick;i(t� iT ); (1)

whereT is the bit duration andEk is the transmitted
power of thekth user. For a multipath channel withPk
paths for thekth user the received signal can be repre-
sented as

r(t) =

KX
k=1

PkX
p=1

wk;psk(t� �k;p) + n(t); (2)
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wherewk;p and�k;p are the complex attenuation and de-
lay (with respect to the timing reference at the receiver)
of the pth path of thekth user respectively andn(t) is
the additive white Gaussian noise. The channel attenu-
ations and delays are assumed to be constant during the
estimation process. The maximum likelihood channel es-
timation technique provides an estimate of the effective
channel impulse response (described later in the discrete
received signal model) and not the estimates of the indi-
vidual attenuations and delays. Therefore, the informa-
tion about the number of paths of each user is currently
not used at the receiver. However, it can be used to fur-
ther refine the estimates obtained here.

The received signal is discretized at the receiver by
sampling the output of a chip-matched filter [1], [4], [10].
The observation vectors are formed by collectingN suc-
cessive outputs of the chip-matched filterr[n] and corre-
spond to a time interval equal to one bit period (starting
at an arbitrary timing reference at the receiver). If we
assume that all the paths of all the users are within one
bit period from the arbitrary timing reference, we can de-
velop a representation similar to that in [10]. The model
can be easily extended to include more general situations
for the delays without affecting the derivation of the chan-
nel estimation algorithms [11]. The discrete received vec-
tor model is given by

ri = UiZbi + ni; (3)

whereri is the ith N � 1 observation vector,Ui is a
N � 2K(N + 1) spreading matrix,Z is a 2K(N +
1) � 2K channel response matrix,bi is a 2K �
1 symbol vector andni is a N � 1 white com-
plex Gaussian zero-mean noise with variance�2. In
particular, the spreading matrix,Ui is of the form
[UR1;i UL1;i+1 UR2;i UL2;i+1 : : : URK;i ULK;i+1] where

URk;i =

2
6664

ck;i[1] ck;i[2] � � � ck;i[N ] 0
...

...
...

...
ck;i[N � 1] ck;i[N ] � � � 0 0
ck;i[N ] 0 � � � 0 0

3
7775

ULk;i+1 =

2
6664

0 0 0 � � � ck;i[1]
...

...
...

...
0 0 ck;i+1[1] � � � ck;i[N � 1]
0 ck;i+1[1] ck;i+1[2] � � � ck;i[N ]

3
7775 :

The matricesURk;i andULk;i+1 are constructed using the
right part of ck;i and the left partck;i+1 respectively.
Since the spreading codes change from symbol to sym-
bol, the last columns ofURk;i andULk;i+1 are used addition-
ally as compared to the short code case. The channel re-
sponse matrixZ = diag(z1; z1; z2; z2; : : : ; zK; zK)

where zk is the (N + 1) � 1 channel response vec-
tor for the kth user. When rectangular chip wave-
forms of durationTc are used, theqthk;p and(qk;p + 1)th

element ofzk have a contribution of(1 � 
k;p)wk;p
and (
k;p)wk;p from the pth path of the kth user,
where �k;p = (qk;p + 
k;p)Tc. The symbol vector
bi = [b1;i b1;i+1 b2;i b2;i+1 : : : bK;i bK;i+1]

> has
two symbols (chosen to be binary�1 in this paper) cor-
responding to each user. While equation (3) is used to
represent the received vector for detection, we rewrite the
received vector for channel estimation as

ri = UiBiz+ ni; (4)

wherez = [z>1 z>2 : : : z>K ]> is a(N +1)K� 1 channel
response vector andBi is a 2K(N + 1) � (N + 1)K
matrix defined as

Bi =

2
6666666664

b1;i 0 0 � � � 0 0
b1;i+1 0 0 � � � 0 0
0 b2;i 0 � � � 0 0
0 b2;i+1 0 � � � 0 0
...

...
...

0 0 0 � � � 0 bK;i
0 0 0 � � � 0 bK;i+1

3
7777777775

IN+1;

where
 denotes the Kronecker product andIN+1 is the
identity matrix of rankN + 1.

III. M AXIMUM LIKELIHOOD CHANNEL ESTIMATION

In this section, we obtain the maximum likelihood
(ML) estimate of the channel response of all the users (z)
using the knowledge of their spreading codes and trans-
mitted bits. In the estimation phase, training sequences
are assumed to be used and in the tracking phase (dis-
cussed in Section V) data decisions are fed back to the
estimator. The likelihood function given the knowledge
of the spreading sequences and the bits is given by

1

(��2)NL
exp

(
�

1

�2

LX
i=1

(ri � UiBiz)
H(ri � UiBiz)

)

and the ML estimate is given bŷzML(L) that satisfies the
equation

RLẑML(L) = yL; (5)

where RL = 1
L

PL

i=1(UiBi)
H(UiBi) and yL =

1
L

PL

i=1(UiBi)
Hri. WhenRL is full rank, i.e.,L �

K + dK=Ne, we can writêzML(L) = R�1L yL. Using
properties of Gaussian random vectors, we can show that:
1. E[ẑML(L)] = z (unbiased)
2. E[ẑML(L)ẑ

H
ML(L)] = �2R�1L =L which is the

Cramer-Rao Bound (efficient)
3. lim

L�!1
E[ẑHML(L)ẑML(L)] = 0 (consistent)
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Later, we will compare this multiuser estimate with the
single-user channel estimate, which corresponds to a slid-
ing correlator approach, given by

ẑSU =
1

NL

LX
i=1

(UiBi)
Hri (6)

IV. I TERATIVE CHANNEL ESTIMATION

A direct computation of the exact ML channel esti-
mate involves the computation of the correlation matrix
RL and then the computation ofR�1L yL at the end of the
preamble. The computation at the end of the preamble is
computationally intensive and could delay the channel es-
timation process beyond the preamble duration and limit
the information rate. In our iterative algorithm, we first
use the fact that the productR�1L yL can be directly ap-
proximated by solving the linear equationRLẑ = yL
using iterative algorithms like the steepest descent algo-
rithm. The iterative algorithms take advantage of the sym-
metry property of the autocorrelation matrixRL to re-
duce the computation. Then, we also notice that we can
spread the computation over the duration of the preamble
by modifying the iterative algorithms to update the esti-
mate as the preamble is being received instead of waiting
till the end of the preamble. The following two iterative
algorithms are proposed to approximate the ML solution
- a simple gradient descent algorithm with constant step
size and the steepest descent algorithm which chooses the
optimal step size during each iteration [12] to speed up
convergence.

A. Gradient Descent Method

The simple gradient descent algorithm performs the
following computations during thelth bit duration.
1. ComputeRl =

l�1
l
Rl�1 +

1
l
(UlBl)

H(UlBl)

2. Computeyl = l�1
l
yl�1 +

1
l
(UlBl)

Hrl
3. Update the estimatêz

ẑ(l) = ẑ(l�1) � �(Rlẑ
(l�1) � yl) (7)

Rlẑ
(l�1) � yl is the gradient of the squared error surface

(corresponding to the exponent in the likelihood function
in Section III) and the step size,�, should be chosen to
ensure convergence and control the speed of convergence.
The computation ofRl is the most intensive step.

In this algorithm, the ML estimate for a preamble of
lengthl is approximated as soon as thelth bit is received.
In fact, to improve accuracy, the updating step (i.e., step 3)
can be repeated as many times as allowed by the available
computational resources. In our simulations, we update
only once per bit.

The iterative estimate estimate is asymptotically unbi-
ased. This can be shown under the assumption that the
eigen valuesf�(j)l g (1 � j � (N+1)K andl = 1; 2; : : :)
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Fig. 1. Maximum and minimum eigen values ofRl – number of users
= 16, spreading gain= 31, preamble length= l.

of Rl can be bounded using positive real numbers� and
� such that� � �

(j)
l � � for all l andj. The proof in

the appendix is done by bounding the sequenceE[ẑ(l)]
by a converging geometric sequence in terms of� and�,
where� is chosen to be lesser than1

�
to ensure conver-

gence. For the case of random codes, the required prop-
erty on the eigenvalues ofRl are easily verified in the
simulations. One sample set of eigenvalues are shown in
Figure 1 to illustrate this.

B. Steepest Descent Method

In the simple gradient descent method described above,
the step size is chosen to be constant for all iterations. To
speed up convergence, the step size can be chosen op-
timally for each iteration to minimize the squared error
achieved by moving in the direction opposite to the gra-
dient. This is achieved by the steepest descent algorithm
[12]. The optimal�(l) for thelth iteration can be obtained
from the residual,e(l) = Rlẑ

(l�1) � yl, as

�(l) =
e(l)

H
e(l)

e(l)
H
Rle(l)

:

V. TRACKING TIME-VARYING CHANNELS

The iterative channel estimation scheme can be easily
extended to track time-variations in the channel after the
preamble. The channel is assumed to be approximately
constant over the preamble duration and the tracking is
performed by sliding the estimation window and using
data decisions instead of training sequences. In particu-
lar, a multishot multistage detection scheme [13] is used
in our case. The correlation matrixRl and the matched-
filter outputsyl are averaged over a sliding window of
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Fig. 2. Mean squared error of channel estimate (E[jjẑ�zjj2]) – number
of users= 16, spreading gain= 31, number of paths per user = 2,
preamble length= l, all users have equal power.

length equal to the preamble length. The channel estimate
is updated as

ẑnew = ẑold � �(Rnew
l ẑold � ynewl ):

As discussed for the estimation scheme, the updating step
can be repeated to improve the accuracy of the estimate.

VI. SIMULATION RESULTS

In this section, we will show simulation results to illus-
trate the effectiveness of the iterative channel estimation
technique and compare it with the ML channel estimate
and the single-user channel estimate. Figure 2 shows the
improvement in average squared error (over 200 simu-
lations) of the various channel estimates with preamble
length. The simulation results show the superior perfor-
mance of the multiuser estimators compared to the single-
user estimator. Also, the iterative estimate performs al-
most as well as the ML estimate and can be further im-
proved by performing more iterations after each bit is re-
ceived or using the steepest descent method. The steepest
descent method achieves the performance of the actual
ML estimate for fewer iterations(about 40). The Cramer-
Rao bound is also shown to illustrate the fact that the ML
estimate is efficient.

Figure 3 shows the performance of the multistage de-
tector with four different estimation methods - single-
user, iterative (gradient descent), ML and actual (uses per-
fect channel knowledge). As expected, there is a signif-
icant gain in performance achieved by using the iterative
channel estimator over the single-user estimator. Also,
the performance of the multistage detector with the itera-
tive estimate is virtually the same as the performance with
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Fig. 3. Performance of multistage detector with different channel es-
timation methods – number of users= 16, spreading gain= 31,
number of paths per user = 2, all users have equal power, preamble
length= 100.

the ML estimate. We show the results for only one itera-
tive scheme since both of them perform almost the same
for a preamble of length 100. It is also worth noting that
this result shows significant gains even in the equal power
case. When the users have different powers, MAI can fur-
ther degrade the single-user estimate.

Figure 4 shows the tracking performance in terms of
the bit error rate performance of the multistage detector
with the various channel estimation and tracking methods.
The iterative multiuser estimator is able to track the fad-
ing channel much better than a conventional single-user
estimator (about 3 dB gain). Finally, Figure 5 shows the
good tracking performance of the iterative algorithm for
a single element of the channel response vector. Similar
tracking is observed for the other elements as well.

VII. CONCLUSIONS

In this paper, we derive the maximum likelihood chan-
nel estimate for multiple users in a CDMA system with
long spreading codes using training sequences. Then, we
approximate the maximum likelihood estimate using an
iterative algorithm to reduce the computational complex-
ity in each processing window. The channel estimate is
near-far resistant and is determined as the effective chan-
nel impulse response which can be directly used in mul-
tiuser detection and decoding. We show that the mean
of the iterative estimate asymptotically converges to the
actual channel as the training sequence length increases.
Simulations are used to illustrate the significant perfor-
mance gains achievable using multiuser channel estima-
tion as opposed to single user estimation (used in cur-
rent systems). The simulations also show that the itera-
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Fig. 5. Tracking performance – number of users= 8, spreading gain
= 16, number of paths per user = 2.

tive scheme can perform as well as the maximum like-
lihood estimation method with reasonable computational
complexity (matrix multiplication). The proposed itera-
tive scheme is finally extended to track fading channel
variations using decision feedback.

APPENDIX

Proposition: Let Rl be the correlation matrix corre-
sponding to a preamble lengthl in the CDMA system de-
scribed above and let�(1)l ; �

(2)
l ; : : : ; �

((N+1)K)
l be its

eigenvalues. If there exist positive real numbers� and�
such that� � �

(j)
l � � for all l andj, then there exists a

real number� such that

lim
l�!1

E[ẑ(l)] = z

whenẑ(l) is updated according to equation (7).
Proof: From equation (7), we can write

ẑ(l) � z = ẑ(l�1) � z� �(Rlẑ
(l�1) � yl)

Sinceyl =
1

l

lX
i=1

(UiBi)
Hri = Rlz +

1

l

lX
i=1

(UiBi)
Hni

we get

ẑ(l) � z = (I� �Rl)(ẑ
(l�1) � z) +

�

l

lX
i=1

(UiBi)
Hni

Because the noise is zero-mean, we have

E[ẑ(l)]� z = (I� �Rl)(E[ẑ(l�1)]� z) (8)

Now,Rl is a symmetric matrix and can be expressed us-
ing the eigenvalue decomposition asQl�lQ

>

l , whereQl

is a unitary matrix and�l is a diagonal matrix of the
eigenvalues ofRl. Therefore,

Q>l (E[ẑ(l)]� z) = (I� ��l)Q
>

l (E[ẑ(l�1)]� z):

We can choose� such that� < 1
�

. Equivalently,1 >

1 � �� > 0. SinceQl is a unitary matrix and�(j)l � �,
we have

jjE[ẑ(l)]� zjj � (1� ��)jjE[ẑ(l�1)]� zjj

wherejj � jj denotes theL2 norm of a vector. Since1 >
1��� > 0, jjE[ẑ(l)]� zjj converges to0 asl �!1. 2
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