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Abstract—Channel estimation techniques for code-division mul- uses the knowledge of the spreading sequence and delays
]Elple acc(eﬁi\ I()CIDﬂMAt? lefsteﬂs Tee(_i :_0 Com:?at ftT)U't'?'ehaC_CeSS inter- of the interfering users (who have already been acquired)
erence effectively. Most existing estimation techniques are s . :
designed for CDMA systems with short repetitive spreading codes. b,Ut ,nOt_the'r bits 'S_ developgd. This leads tq an estimator
However, current and next generation wireless systems use long Similar in complexity to the linear decorrelating detector.
spreading codes whose period is much larger than the symbol du-  |n our paper, we develop the multiuser maximum like-
ration. In this paper, we derive the maximum likelihood channel es- lihood channel estimation algorithm given the knowledge
timate for long code CDMA systems over multipath channels using fthe bi £ all th .. decisi
training sequences and approximate it using an iterative algorithm Of the bits of all the users (training sequences or decision
to reduce the computational complexity in each processing window. feedback) and approximate the solution directly using an
The asymptotic convergence of the mean of the_ iterative estimate jtarative algorithm. In our approach, we update the chan-
to the actual channel is also shown. The effectiveness of the iter- | estimat fallth lthe ti ith ing trai
ative channel estimator is demonstrated in terms of squared error ne e_s Ima es_ ora .e.users allthe ime erther using train-
in estimation as well as the bit error rate performance of a multi-  ing bits or using decision feedback from the detector and
itags detehctor bialse?_ ont;he (iharr]m_el est_imatttas. dFir;atlly,tthekprcl’polseddo not consider users to be acquired (since the channel is
iterative channel estimation technique is extended to track slowly . : ; : )
varying multipath fading channels using decision feedback. Thus, tlm_e varylng). The Itera,tlve approach a”_OWS th,e pompu
an MAI resistant multiuser channel estimate with reasonable com- tation of the channel estimate using matrix multiplications
putational complexity is derived for long code CDMA systems over - during each processing window and spreads the computa-
multipath fading channels. tion over the length of the preamble. Thus, this algorithm

has reasonable complexity and should be implementable

[. INTRODUCTION in practice. Also, we estimate the effective channel re-

Code-division multiple access (CDMA) systems are iriPonse of all the users simultaneously as a single vector
herently interference limited. Receivers can combat m@nd use it directly in detection instead of estimating the
tiple access interference (MAI) by using multiuser chaslelays and amplitudes of each path separately [10].
nel estimation, detection and decoding algorithms. Sev-
eral multiuser algorithms have been proposed for chan-
nel estimation in [1], [2], [3], [4], [5], [6]. These algo- We consider akK user asynchronous direct sequence
rithms are developed for CDMA systems with short re€CDMA system with long spreading codes. The spreading
peating (every symbol) spreading codes for the varioggguence correspondingite;, thei'" bit of thek" user,
users. However, spreading codes used in practical COM@ denoted byey, ;(¢) and consists ofV chips (spread-
systems have a period much larger than the symbol dut@@ gain). The corresponding discrete chip sequence is

II. SYSTEM MODEL

tion (callediong spreading codésTherefore, most of the denoted bycy. ;[1] ... ¢k i[IV]]. The transmitted signal of
existing algorithms are either inapplicable or need préhek*" user corresponding to an information sequence of
hibitive computational resources. lengthL is given in baseband format by

Recently, some channel estimation algorithms have L
been proposed in [7], [8], [9] for long code CDMA sys- sk(t) = \/-E_kzbk7ick7i(t —iT), (1)
tems. The techniques in [7] and [9] are based on the im1

knowledge of the spreading sequences, channel estimaigs . 7 is the bit duration andf}, is the transmitted
and bits of the interfering users, and they use the i”t%’()wer of thek*" user. For a multipath channel with,

ference cancellation and the minimum mean squared ﬁﬁths for thek!® user the received signal can be repre-
ror (MMSE) approach, respectively. In [8], an vamSiéented as

tion scheme (for a single user entering the system) that
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wherewy, , andry, ,, are the complex attenuation and dewhere z;, is the (N + 1) x 1 channel response vec-
lay (with respect to the timing reference at the receiveyr for the k** user. When rectangular chip wave-
of the p* path of thek"" user respectively and(t) is forms of durationT.. are used, the;", and (¢x,, + 1)

the additive white Gaussian noise. The channel atterelement ofz; have a contribution of1 — ;. ,)w,p
ations and delays are assumed to be constant during &inel (v ,)ws, from the pt* path of the k' user,
estimation process. The maximum likelihood channel eshere 7, , = (qrp + Yp)Ic. The symbol vector
timation technique provides an estimate of the effectite = [bi; bi1is1 b2i b2iy1 .. bk bk.it1]' has
channel impulse response (described later in the discres® symbols (chosen to be binatyl in this paper) cor-
received signal model) and not the estimates of the indesponding to each user. While equation (3) is used to
vidual attenuations and delays. Therefore, the informeepresent the received vector for detection, we rewrite the
tion about the number of paths of each user is currentlgceived vector for channel estimation as

not used at the receiver. However, it can be used to fur-

ther refine the estimates obtained here. r; = U;Biz + n;, (4)

The received signal is discretized at the receiver
sampling the output of a chip-matched filter [1], [4], [10
The observation vectors are formed by collectiviguc-
cessive outputs of the chip-matched filtén] and corre-

b

Wherez = [z{ z5 ...z.]" isa(N+1)K x 1channel
response vector arB; is a2K(N + 1) x (N + 1K
matrix defined as

spond to a time interval equal to one bit period (starting by 0 0 --- 0 0

at an arbitrary timing reference at the receiver). If we bl,z’7+1 0 0 0 0

assume that all the paths of all the users are within one 0 byi O 0 0

bit period from the arbitrary timing reference, we cande; 0 boiy1 O 0 0 oI
velop a representation similar to that in [10]. The modél® — B N+
can be easily extended to include more general situations

for the delays without affecting the derivation of the chan- 0 0 0 0 bk

nel estimation algorithms [11]. The discrete receivedvec- | 0 0 0 0 bri+1 |

tor model is given b .
'S given by where® denotes the Kronecker product ahgl,; is the

ri = UiZb; + n;, 3) identity matrix of rankN + 1.

, th . , [11. M AXIMUM LIKELIHOOD CHANNEL ESTIMATION
wherer; is the:i!® N x 1 observation vectorl/; is a

N x 2K(N + 1) spreading matrixZ is a 2K (N + In thig section, we obtain the maximum likelihood
1) x 2K channel response matrixp; is a 2K x (ML) estimate of the channel response of all the users (
1 symbol vector andn; is a N x 1 white com- Using the knowledge of their spreading codes and trans-
plex Gaussian zero-mean noise with variamée In Mitted bits. In the estimation phase, training sequences
particular, the spreading matrix/; is of the form are assumed to be used and in the tracking phase (dis-

Wl Ul uf ub., ... uf, uk..)where cussed in Section V) data decisions are fed back to the
S v o estimator. The likelihood function given the knowledge
crill] cil2] o ers[N] 0 of the spreading sequences and the bits is given by
= : : : : 1 1 & .
! cri[N—=1] cxi[N] -+ 0 0 (mo?)NT P 752 . (ri — UiB;z)" (r; — U;Biz)
cki[N] 0o - 0 0 i=1
and the ML estimate is given 3y, , (L) that satisfies the
0 0 0 e cr,il1] equation
A : : : Rrzur(L) =yr, )
=1 ; ; . )
0 0 ckitr[l] o es[N—1] | where Ry, = LY UB)?UB;) andy, =
0 crinnlll cri2 - ailNT ] Lsf guB,)Hr,. WhenRy, is full rank, ie., L >

TN —1 .
The matrices/[?; and/}, , are constructed using the/ + [K/N1, we can writezarr, (L) = Ry yr. Using
right part of Ck; and the left part, ;11 respectively. properties of Gaussian random vectors, we can show that:
Since the spreading codes change from symbol to sylln-E[%ML(L)]A; z (unb|ased)2 . o

bol, the last columns a@f/*; andi/[”, , | are used addition- 2. B[y (L)zy (L)) = o°Rp /L which is the

ally as compared to the short code case. The channel%amer'RaQEoundA (efficient) _

sponse matriZ = diag(z1, z1, 22, 22, ..., 7k, zx) o 0 ElZi (L)Zmi(L)] = 0 (consistent)
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Lgter, we will compare.thls mult|.user estimate with th % ‘ ‘ ‘ ‘ ‘ ‘
single-user channel estimate, which correspondstoas ~ MIN.EIG.
ing correlator approach, given by 100[-

®
=]
T

L
.1 H
Zsy = NI ;(usz) r; (6)

(2]
=]
T

IV. I TERATIVE CHANNEL ESTIMATION

ENVALUES OF RI

A direct computation of the exact ML channel estig
mate involves the computation of the correlation matr
R, and then the computation R;lyL at the end of the
preamble. The computation at the end of the preamble | ]
computationally intensive and could delay the channel ¢ B
timation process beyond the preamble duration and lir o=

. . 3 . B ) 20 40 60 8‘0 1(30 léO 14‘10 léO léO 200
the information rate. In our iterative algorithm, we firs. !

use Fhe fact that th? prOdURfL yr can k?e d'[eCtly ap- Fig. 1. Maximum and minimum eigen values Bf — number of users

proximated by solving the linear equatid,z = yr, = 16, spreading gair= 31, preamble length= [.

using iterative algorithms like the steepest descent algo-

rithm. The iterative algorithms take advantage of the sym-

metry property of t_he autocorrelation mapRL to re- of R; can be bounded using positive real numheend

duce the computation. Then, we also notice that we can () ) )
A7’ > aforalll andj. The proofin

; ; h thats >

spread the computation over the duration of the preamBeU¢ _— : o
by modifying the iterative algorithms to update the estf’® @Ppendix is done by bounding the sequeRfE")]
a converging geometric sequence in terma ahdp,

mate as the preamble is being received instead of waiti é ,
till the end of the preamble. The following two iterative’V 1€/ 1S chosen to be lesser thgnto ensure conver-

algorithms are proposed to approximate the ML solutig#nce- For the case of random codes, the required prop-

- a simple gradient descent algorithm with constant st@&%’ on the eigenvalues @, are easily verified in the

size and the steepest descent algorithm which chooses ulatlons_."One SaT]P'e set of eigenvalues are shown in
optimal step size during each iteration [12] to speed Jpdure 1 to illustrate this.
convergence.

40

B. Steepest Descent Method

A. Gradient Descent Method In the simple gradient descent method described above,
The simple gradient descent algorithm performs ttibe step size is chosen to be constant for all iterations. To

following computations during thié* bit duration. speed up convergence, the step size can be chosen op-
1. ComputeR; = ’*TlR,,l + %(L{lB,)H(L{lBl) timally for each iteration to minimize the squared error
2. Computey; = Sy, 1 + L(UB) achieved by moving in the direction opposite to the gra-
3. Update the estimate dient. This is achieved by the steepest descent algorithm
[12]. The optimal.() for thel*" iteration can be obtained
70 =709 — py(Rz-Y —y) (7) from the residuale® = R;z("1) —y;, as
R,;z(""1 — y, is the gradient of the squared error surface OH
. . . . . e e
(corresponding to the exponent in the likelihood function ph = —_—.
in Section 1) and the step sizg, should be chosen to e " Rie®

ensure convergence and control the speed of convergence.
The computation oR; is the most intensive step.

In this algorithm, the ML estimate for a preamble of The iterative channel estimation scheme can be easily
length! is approximated as soon as e bit is received. extended to track time-variations in the channel after the
In fact, to improve accuracy, the updating step (i.e., stepgjeamble. The channel is assumed to be approximately
can be repeated as many times as allowed by the availagd@stant over the preamble duration and the tracking is
computational resources. In our simulations, we updaserformed by sliding the estimation window and using
only once per bit. data decisions instead of training sequences. In particu-

The iterative estimate estimate is asymptotically unldiar, a multishot multistage detection scheme [13] is used
ased. This can be shown under the assumption that th@ur case. The correlation mati; and the matched-
eigen value@\l(])} (1<j<(N+1)Kandl =1, 2,...) filter outputsy, are averaged over a sliding window of

V. TRACKING TIME-VARYING CHANNELS
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Fig. 2. Mean squared error of channel estim#l|&—z/|2]) — number  Fig. 3. Performance of multistage detector with different channel es-

of users= 16, spreading gain= 31, number of paths per user =2,  timation methods — number of users 16, spreading gain= 31,
preamble length= 1, all users have equal power. number of paths per user = 2, all users have equal power, preamble
length= 100.

length equal to the preamble length. The channel estimate , )
is updated as the ML estimate. We show the results for only one itera-

tive scheme since both of them perform almost the same
grew — gold _ j(Rpewgold _ ynew), for a preamble of length 100. It is also worth noting that
this result shows significant gains even in the equal power

As discussed for the estimation scheme, the updating sf&@$e- When the users have different powers, MAI can fur-

can be repeated to improve the accuracy of the estimat&er degrade the single-user estimate.
Figure 4 shows the tracking performance in terms of

VI. SIMULATION RESULTS the bit error rate performance of the multistage detector

with the various channel estimation and tracking methods.

In this sectlo_n, we will show_5|mullat|on results to.'"us.'The iterative multiuser estimator is able to track the fad-
trate the effectiveness of the iterative channel estimati

techni d it with the ML ch | esti % channel much better than a conventional single-user
echnique and compare it wi N channeél estimalesy mator (about 3 dB gain). Finally, Figure 5 shows the

%?drghiﬁ:ggltef:zerecrgagnfl eas‘rtggaé?r'olr:'?g'rsrzzzgo‘é\.’; _eod tracking performance of the iterative algorithm for
Improv In average squ M ' single element of the channel response vector. Similar

lations) of the various channel estimates with pream Facking is observed for the other elements as well
length. The simulation results show the superior perfor- '

mance of the multiuser estimators compared to the single-
user estimator. Also, the iterative estimate performs al-
most as well as the ML estimate and can be further im- In this paper, we derive the maximum likelihood chan-
proved by performing more iterations after each bit is rexel estimate for multiple users in a CDMA system with
ceived or using the steepest descent method. The steef@sj spreading codes using training sequences. Then, we
descent method achieves the performance of the actapproximate the maximum likelihood estimate using an
ML estimate for fewer iterations(about 40). The Crameiterative algorithm to reduce the computational complex-
Rao bound is also shown to illustrate the fact that the Mity in each processing window. The channel estimate is
estimate is efficient. near-far resistant and is determined as the effective chan-
Figure 3 shows the performance of the multistage deel impulse response which can be directly used in mul-
tector with four different estimation methods - singletiuser detection and decoding. We show that the mean
user, iterative (gradient descent), ML and actual (uses pef-the iterative estimate asymptotically converges to the
fect channel knowledge). As expected, there is a signdetual channel as the training sequence length increases.
icant gain in performance achieved by using the iterati&mulations are used to illustrate the significant perfor-
channel estimator over the single-user estimator. Alsmance gains achievable using multiuser channel estima-
the performance of the multistage detector with the iterien as opposed to single user estimation (used in cur-
tive estimate is virtually the same as the performance witent systems). The simulations also show that the itera-

VIlI. CONCLUSIONS
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real numbey, such that

lim E[zW] =2z

l—ro0

whenz) is updated according to equation (7).
Proof: From equation (7), we can write

20—z =20"Y —z — p(RizY —y)

l

l
i H _ 1 H _ 1 H
SInCEyl = 7 E (Z/{ZBZ) r, = Rz + 7 'g I(Z/IIBZ) n;

i=1

we get

l

20—z = (IR —2) + B3 @B,

l

i=1

timation and tracking methods — number of users3, spreading Because the noise is zero-mean, we have

gain= 16, number of paths per user = 2, all users have equal power,
preamble length= 100.

Bz —z= (11— pR)(E[z'"Y]-2)  (8)

Now, R; is a symmetric matrix and can be expressed us-

0.7

T T
— — SINGLE USER

—— GRADIENT DESCENT (u = 0.002)
— - ACTUAL

ABSOLUTE VALUE OF CHANNEL COEFFICIENT

I I I I I I
1500 2000 2500 3000 3500 4000

I
1000

0 500 4500

Fig. 5. Tracking performance — number of users3, spreading gain 1]
= 16, number of paths per user = 2.

(2]
tive scheme can perform as well as the maximum like-
lihood estimation method with reasonable computational
complexity (matrix multiplication). The proposed itera{3]
tive scheme is finally extended to track fading channel
variations using decision feedback.

(4]

APPENDIX

(5]
Proposition: Let R; be the correlation matrix corre-

sponding to a preamble lengtin the CDMA system de-
scribed above and let™™, A?, . A(VFTVE) e jts
eigenvalues. If there exist positive real numberandg [
such that3 > A,(j) > « for all [ andyj, then there exists a

We can choose such thaty < =.

ing the eigenvalue decomposition@sA;Q;" , whereQ,
is a unitary matrix and\; is a diagonal matrix of the
eigenvalues oR,. Therefore,

Q/ (B[z"] - 2) = 1 - uA)Q/ (E[2"""] - 2).

5. Equivalently,1 >

i 1 — pa > 0. SinceQ; is a unitary matrix and\l(j) > q,
we have

1E[2"0] = 2]| < (1 = pa)||BE"V] - 4]

where|| - || denotes theZ, norm of a vector. Sincé >
1—pa >0, ||E[z2(D] — 2|| converges t®) asl — co. O
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