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Abstract— In this paper, we consider Multiple Input Multiple
Output (MIMO) systems with antenna selection at the trans-
mitter and Maximal Ratio Comb should be removed from the
URLs mentioned in the references.ining (MRC) at the receiver.
Employing antenna subset selection has been shown to reduce
the transmitter complexity without any loss in diversity. However,
feedback delay leads to selection of the wrong subset resulting in
performance degradation. In this paper, we evaluate the outage
probability of a single transmit antenna selection scheme in
a MIMO system under conditions of delayed Channel State
Information (CSI).

I. INTRODUCTION

Multiple antenna arrays have been shown to provide tremen-
dous improvement in the performance of a wireless communi-
cation system [1]. However, mobile devices can accommodate
only one or two antennas because of the size and power
limitations. Therefore, in order to decrease the probability of
outage at a given rate, large number of antennas have to be
used at the transmitter. The major bottleneck in deploying
large number of antennas is the cost of the RF chain hardware
associated with each antenna. The diversity order, however, has
been shown to depend only on the total number of antenna
elements irrespective of the number of antennas that are
used simultaneously [2]. Therefore, employing more antenna
elements at the transmitter and using only the “best” subset
of them reduces transmitter complexity and leads to lower
feedback bandwidth while preserving the diversity benefits.
The outage performance of the Multiple Input Multiple Output
(MIMO) transmit antenna selection scheme with maximal ratio
combining at the receiver is presented in [3] and the outage
probability of the transmit antenna selection system employing
space time coding is presented in [4]. It has been shown in [3]
and [4] that antenna selection preserves the diversity benefit.

Transmit antenna selection techniques require CSI to se-
lect the “best” set of antennas. Antenna subset selection is
performed at the receiver and the selected index is fedback
to the transmitter. Estimation errors and channel variations
due to feedback delay may lead to erroneous selection. The
degradation in the performance of the MISO beamforming

system due to feedback delay is presented in [7]. The BER
performance of the beamforming system in the presence of
feedback delay is analysed in [8]. The loss in the achievable
capacity of a hybrid selection - maximal ratio transmission
system due to channel estimation errors is studied in [5] using
simulations. In [10], the authors show that the asymptotic
diversity order of the antenna selection system depends upon
the ordinal number of the selected antenna. The effect of the
errors in the feedback channel is discussed in [9].

In this paper, we analyze the outage probability of the
antenna selection/MRC scheme in the presence of delayed CSI
when one out of the multiple transmit antennas is selected for
transmission. Analysis on outage probability is performed as a
function of ρ, the correlation coefficient between the actual and
the delayed CSI. Results are shown for any Nt ×Nr system.
Analytical results show that for values of ρ < 1, the diversity
gain becomes equal to the number of receive antennas. The
rest of the paper is organised as follows: section II describes
the system model. Section III presents the outage analysis of
the system in the presence of perfect antenna selection. Section
IV presents the outage analysis of the system in the presence
of delayed CSI. Section V presents the numerical results and
conclusions are drawn in section VI.

II. SYSTEM MODEL

The system model is depicted in Fig 1. A MIMO system
with Nt transmit antennas and Nr receive antennas is consid-
ered. Antenna selection is performed at the transmitter. The
channel between the transmitter and receiver is assumed to be
frequency flat. The received vector at time index k is therefore,
represented as:

y(k) =
√
Phsel(k)x(k) + n(k), (1)

where x(k) represents the transmit symbol at time k, P is
the transmit power, n(k) ∼ CN

(

0, σ2
nINr

)

is the vector
of Additive White Gaussian Noise (AWGN) and hsel(k) is
the selected channel vector. hsel(k) is one of the columns
of the Nr × Nt channel matrix H(k) at instant k. The
elements of H(k) are assumed to be i.i.d CN (0, 1). A block



fading model is considered, where the elements of H are
assumed to be constant over a block and correlated across
blocks, the correlation coefficient being dependent on the
Doppler frequency and the block duration. The channel vector
corresponding to the ith and (i−d)th block are related through
a first order AR model as [7]:

Hold = ρH+
√

1− ρ2W, (2)

where H and Hold represent channel matrices corresponding
to the blocks i and (i− d), and W is the matrix of i.i.d. zero
mean unit variance Gaussian random variables. The parameter
ρ is the correlation between entries of H and Hold. From
Jakes’ model, ρ = J0(2πfdTd), where fd is the Doppler
frequency and T is the block duration.

Antenna selection is performed at the receiver and the
selected index is fedback to the transmitter. Due to feedback
delay, the information on the selected antenna index is used
at the transmitter only a few block after the selection is
performed.
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Fig. 1: System Model

III. OUTAGE ANALYSIS WITH PERFECT ANTENNA
SELECTION

In the case of perfect antenna selection, the selected an-
tenna corresponds to that of the maximum gain. Therefore,
||hsel||2 = max

i=1,2,··· ,Nt

||hi(k)||2. Since the channel coefficients
are assumed to be i.i.d. complex Gaussian, the outage proba-
bility with perfect antenna selection is given as [3]:

P (outage) = [γNr
(β)]

Nt (3)

where β = eR−1
SNR

and R is the required rate in nats/sec/Hz.
SNR = Pd

σ2
n

, where Pd is the transmit data power. γi(x)
is the lower incomplete Gamma function of order i. γi() is
monotonically decreasing with slope i. Therefore, (γNr

())Nt

falls with the rate NtNr, which implies that the system with
perfect antenna selection achieves a diversity order of NtNr

[3].

IV. OUTAGE ANALYSIS OF ANTENNA SELECTION WITH
DELAYED CSI

In this section, the degradation due to the feedback delay is
studied. Due to feedback delay, antenna selection is done based
on past channel coefficients instead of current coefficients i.e.,
||hsel(k)||2 = ||hj(k)||2, where j = arg max

i=1,2,··· ,Nt

||holdi
||2.

Outage occurs when the selected antenna falls into outage.
Therefore,

P (outage) =
Nt
∑

i=1

P
(

Antenna i is selected, ||hi||2 < β
)

(4)

=

Nt
∑

i=1

P

(

||hi||2 < β, ||holdi
||2 > max

j=1,2,··· ,Nt,j 6=i
||holdj

||2
)

.

Using Ai = ||hi||2, αi = ||holdi
||2 and Zi =

max
j=1,2,··· ,Nt,j 6=i

||holdj
||2 we get,

P (outage) =
Nt
∑

i=1

P (Ai < β,αi > Zi) (5)

Using the relation in equation (2), we get

αi =

Nr
∑

j=1

∣

∣

∣
ρhji +

√

1− ρ2wji

∣

∣

∣

2

(6)

Since wji ∼ CN (0, 1), αi is noncentral chisquare distributed
with 2Nr degrees of freedom, for a given Ai. The non
centrality parameter is δi = ρ2Ai. Since hji’s and wji’s are
i.i.d., αi’s and Ai’s are also i.i.d. Therefore, by symmetry, we
have

P (outage) = NtP (A1 < β,α1 > Z1) (7)

By definition, Z1 depends on ||hi||2, i = 2, 3, · · ·Nt and A1 =
||h1||2. Therefore, Z1 and A1 are independent and we get,

P (outage) = Nt

∫ ∞

0

∫ β

0

P (α1 > z/A1, z)fA1
(a1)fZ(z)da1dz

(8)
Since α1, given A1 is noncentral chisquare distributed with
2Nr degrees of freedom, we have

P (α1 > z/A1, z) = 1− F(nc−χ2,2Nr,δ1) (z) , (9)

where F(nc−χ2,2Nr,δ1)() is the CDF of the non-central chi
squared random variable with 2Nr degrees of freedom and
noncentrality parameter δ1. Since A1 = ||h1||2, the pdf of A1

is given by:

fA1
(a1) =

aNr−1
1 e−a1

(Nr − 1)!
(10)

After integrating over A1, we get

P (α1 > z/z) =

∞
∑

j=0

(

j +Nr − 1

j

)

µj

(1 + µ)j+Nr

γj+Nr
(β(1 + µ)) Γj+Nr

(z(1 + µ)) , (11)

where γi(x) and Γi(x) are the lower and upper incomplete
Gamma functions of order i respectively and µ = ρ2

1−ρ2
. It

can be seen that Z denotes the maximum of Nt − 1 i.i.d.
chisquare random variables each of degree 2Nr. The pdf of



Z is therefore, given by:

fZ(z) = (Nt − 1)

[

1− e−z

Nr−1
∑

i=0

zi

i!

]Nt−2

zNr−1

(Nr − 1)!
e−z

= (Nt − 1)

Nt−2
∑

i=0

(

Nt − 2

i

)

(−1)ie−z(i+1)

(

Nr−1
∑

l=0

zl

l!

)i

zNr−1

(Nr − 1)!
(12)

Using multinomial theorem,

fZ(z) =
Nt − 1

(Nr − 1)!

Nt−2
∑

i=0

(

Nt − 2

i

)

(−1)ie−z(i+1)zNr−1

i
∑

l1l2···lNr

(

i!

l1!l2! · · · lNr
!

)

1l1
( z

1!

)l2
· · ·
(

zNr−1

(Nr − 1)!

)lNr

(13)
Using equation (13) and equation (11), the outage probability
is calculated as:

P (outage) =
Nt
∑

i=2

(

Nt

i

)

(−1)i
i−2
∑

l1l2···lNr

(i− 2)!

l1!l2! · · · lNr
!

(L+Nr − 1)!

(0!)l1(1!)l2 · · · ((Nr − 1)!)lNr (Nr − 1)!
[

i

(i− 1)L+Nr−1
γNr

(β)−
(

1

i(µ+ i)

)Nr−1(
1

µ+ i

)L

L+Nr−1
∑

p=0

(

1 + µ

i− 1

)p L+Nr−1−p
∑

k=0

(

L+ 2Nr − 1

Nr + k + p

)

(

k +Nr − 1

k

)

(µ

i

)k

γk+Nr

(

iβ(1 + µ)

i+ µ

)]

, (14)

where the integers [l1l2 · · · lNr
] are such that

Nr
∑

t=1

lt = i−2 and

L =

Nr−1
∑

t=0

tlt+1. For the sake of simplicity, we present only

the derivation of the outage probability for Nt × 1, Nt × 2
and 2 × Nr systems in the appendix and the expressions of
the outage probability of the above systems are given in the
following subsections.

A. Nt × 1 System
In the case of Nr = 1, the expression for outage probability

can be obtained as (details of the derivation are in Appendix
VI):

P (outage) = 1 +

Nt
∑

i=1

(

Nt

i

)

(−1)ie
−

(

µ+ 1

µ+ i

)

iβ
. (15)

Using Taylor’s series expansion for e−x at high SNR’s, the
asymptotic diversity gain is found to be 1 for 0 < ρ < 1.
Therefore, we can see that delayed feedback reduces the
asymptotic diversity order of the system.

B. Nt × 2 System
In the case of Nr = 2, the expression for outage probability

can be obtained as (details are in Appendix VI):

P (outage) =
Nt
∑

i=2

(

Nt

i

)

(−1)ii
i−2
∑

l=0

(

i− 2

l

)

(l + 1)!

(

1

i− 1

)l+1

γ2(β)−
Nt
∑

i=2

(

Nt

i

)

(−1)i
(µ+ i)i

i−2
∑

l=0

(

i− 2

l

)

(

1

µ+ i

)l

(l + 1)!

l+1
∑

p=0

(

1 + µ

i− 1

)p

l+1−p
∑

k=0

(

l + 3

p+ k + 2

)(

k + 1

k

)

(µ

i

)k

γk+2

(

iβ(1 + µ)

i+ µ

)

(16)

C. 2×Nr System
In this case, the outage probability is given by (details in

appendix VI):

P (outage) = 2γNr
(β)−

(

1

2(µ+ 2)

)Nr−1 Nr−1
∑

t=0

(1 + µ)t

Nr−1−t
∑

k=0

(

2Nr − 1

Nr + t+ k

)(

K +Nr − 1

k

)

(µ

2

)k

γk+Nr

(

2β
1 + µ

2 + µ

)

(17)

V. RESULTS

MIMO systems with different Nt and Nr combinations are
considered. The desired rate R is 2 nats/sec/Hz. Correlation
coefficient (ρ) of 0.97 is considered, which corresponds to a
normalized Doppler of 0.06. For example, Doppler frequency
of 30Hz and time delay of 2 msec lead to a normalized Doppler
of 0.06. The outage probability of the system without feedback
is also considered for the sake of comparison.
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Fig. 4: SNR vs. Probability of outage for 4× 2 system, normalized
Doppler = 0.06
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Fig. 5: SNR vs. Probability of outage for 2× 4 system, normalized
Doppler = 0.06

Fig. 2 depicts the outage performance of the 2× 1 system
with delayed CSI. It is clear from the graph that delayed CSI
leads to a diversity order of 1 instead of 2. However, the
diversity order of the open loop system is 2. Therefore at high
SNRs the antenna selection scheme with delayed CSI becomes
worse compared to the open loop scheme. This shows that the
gain in adaptation vanishes due to delayed CSI. Fig. 3 depicts
the outage performance of the 2 × 2 system with delayed
CSI. It can be seen that the diversity order of the system is
2 instead of 4. Here again, the outage probability of the open
loop system becomes better compared to the antenna selection
scheme with delayed CSI at high SNRs. Fig. 4 depicts the
outage performance of the 4×2 system. In this case also it can
be seen that delayed CSI causes antenna selection to become
worse than the open loop scheme at the SNR of about 20dB.
Fig. 5 depicts the performance of the 2 × 4 system. In this
case also, the performance of the antenna selection system
with delayed CSI becomes worse than the open loop scheme
at SNR of about 17dB.

VI. CONCLUSIONS

In this paper, the outage performance of the MIMO antenna
selection/MRC system in the presence of delayed CSI is
studied. Expressions for the outage probability of a Nt ×Nr

system is obtained. Results show that feedback delay leads
to significant degradation in performance. The asymptotic
diversity gain tends to Nr, the number of receive antennas
in the presence of delay. At high SNRs, the performance of
the antenna selection system with delayed feedback becomes
worse than the open loop scheme. Channel prediction tech-
niques can be used to increase the crossover SNR, i.e., the
SNR at which the antenna selection scheme falls behind the
open loop scheme as in [11] where prediction has been used
in adaptive beamforming systems with delayed feedback.

APPENDIX I: DERIVATION OF THE OUTAGE PROBABILITY
OF Nt × 1 SYSTEM

For Nr = 1, equation (11) reduces to:

P (α1 > z/z) =
∞
∑

j=0

µj

(1 + µ)j+1
γj+1 (β(1 + µ)) Γj+1 (z(1 + µ)) , (18)

The pdf of z reduces to:

fZ(z) = (Nt − 1)

Nt−2
∑

i=0

(

Nt − 2

i

)

(−1)i exp−z(i+1) (19)

Using equation (18) and equation (19), equation (8) can be
written as:

P (outage) = Nt

∫ ∞

0

P (α1 > z/z)fZ(z)dz (20)



Upon integrating, we get,

P (outage) = Nt(Nt − 1)

Nt−2
∑

i=0

(

Nt − 2

i

)

(−1)i
(2 + µ+ i)

∞
∑

j=0

µj

(1 + µ)j+1
γj+1 (β(1 + µ))

j
∑

k=0

(

1 + µ

2 + µ+ i

)k

(21)

Upon simplifying, we get

P (outage) = 1 +

Nt
∑

i=1

(

Nt

i

)

(−1)ie
−

(

µ+ 1

µ+ i

)

iβ
. (22)

APPENDIX II :DERIVATION OF THE OUTAGE PROBABILITY
OF Nt × 2 SYSTEM

For Nr = 2, equation (11) reduces to:

P (α1 > z/z) =

∞
∑

j=0

(j + 1)
µj

(1 + µ)j+2

γj+2 (β(1 + µ)) Γj+2 (z(1 + µ)) (23)

The pdf of Z is :

fZ(z) = (Nt − 1)

Nt−2
∑

i=0

(

Nt − 2

i

)

(−1)ie−z(i+1)
i
∑

l=0

(

i

l

)

zl+1

(24)
Upon integrating equation (23) with respect to z, we get,

P (outage) = Nt(Nt − 1)

Nt−2
∑

i=0

(

Nt − 2

i

)

(−1)i
(2 + µ+ i)2

i
∑

l=0

(

i

l

)(

1

2 + µ+ i

)l ∞
∑

j=0

(j + 1)
µj

(1 + µ)j+2

γj+2 (β(1 + µ))

j+1
∑

k=0

(

1 + µ

2 + µ+ i

)k
(k + l + 1)!

k!
(25)

However,
j+1
∑

k=0

(

1 + µ

2 + µ+ i

)k
(k + l + 1)!

k!
= (l + 1)!

[

(

2 + µ+ i

1 + i

)l+2

−

(

1 + µ

2 + µ+ i

)j+1 l+2
∑

t=1

(

l + j + 3

t+ j + 1

)(

1 + µ

1 + i

)t
]

(26)

Substituting equation(26) in equation (25) and simplifying we
get,

P (outage) =
Nt
∑

i=2

(

Nt

i

)

(−1)ii
i−2
∑

l=0

(

i− 2

l

)

(l + 1)!

(

1

i− 1

)l+1

γ2(β)−
Nt
∑

i=2

(

Nt

i

)

(−1)i
(µ+ i)i

i−2
∑

l=0

(

i− 2

l

)

(

1

µ+ i

)l

(l + 1)!

l+1
∑

p=0

(

1 + µ

i− 1

)p

l+1−p
∑

k=0

(

l + 3

p+ k + 2

)(

k + 1

k

)

(µ

i

)k

γk+2

(

iβ(1 + µ)

i+ µ

)

(27)

APPENDIX III :DERIVATION OF THE OUTAGE PROBABILITY
OF 2×Nr SYSTEM

For Nt = 2, the pdf of Z is given by:
fZ(z) = zNr−1

(Nr−1)!e
−z . Upon integrating equation (11) with

respect to z, we get,

P (outage) = 2

(1 + µ)Nr (2 + µ)Nr

∞
∑

j=0

(

j +Nr − 1

j

)(

µ

1 + µ

)j

γj+Nr
(β(1 + µ))

j+Nr−1
∑

k=0

(

k +Nr − 1

k

)(

1 + µ

2 + µ

)k

(28)

Following the approach as in appendix VI, we get

P (outage) = 2γNr
(β)−

(

1

2(µ+ 2)

)Nr−1 Nr−1
∑

t=0

(1 + µ)t

Nr−1−t
∑

k=0

(

2Nr − 1

Nr + t+ k

)(

K +Nr − 1

k

)

(µ

2

)k

γk+Nr

(

2β
1 + µ

2 + µ

)

(29)
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