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Abstract—Scheduling policies in multi-queue multi-server sys-
tems need to allocate servers based on the channel state informa-
tion and the queue state information. In the downlink, channel
state information available to the scheduler may be imperfect due
to feedback delay and estimation errors. Motivated by this, we
consider the downlink scheduling problem of allocating servers
to multi-queue multi-server systems under channel uncertainty.
We propose new policies which allocate the servers based on
the predicted channel information. Simulations indicate that our
policies have better delay and backlog properties than a policy
proposed by Kar, Luo & Sarkar [1].

I. INTRODUCTION

In this paper, we consider resource allocation in multi-queue

multi-server systems. We propose new policies for resource

allocation when the channel state information available is

imperfect. The multi-queue multi-server model can be used

for the downlink of packet data systems based on orthogonal

frequency division multiplexing (OFDM) or code division

multiple access (CDMA). In an OFDM-based system, each

subcarrier or a group of subcarriers can be modeled as a

server. In a CDMA-based system, each spreading code can

be modeled as a server. Therefore, the code allocation and

subcarrier allocation problems in CDMA and OFDM are

special cases of the problem considered here.

Andrews et al [2] proposed resource allocation policies

for multi-queue single server systems, particularly for CDMA

packet systems such as 1xEV-DO Rev 0 [3] where all available

codes are allocated to a single user in each time slot. Kumaran

& Viswanathan [4] and Agarwal et al [5] proposed scheduling

of multiple users in each slot for CDMA-based systems where

the codes could be considered as multiple servers. Downlink

scheduling for such systems is quite well-studied. A sparse

sampling of the works in this area, relating to those closely

relevant to this paper, is as follows. Kittipiyakul & Javidi

[6] proposed an optimal server allocation policy to minimise

average delay under time-varying on-off connectivities. In

particular, they showed that the maximum-throughput load-

balancing (MTLB) policy that achieves maximum instanta-

neous throughput and simultaneously balances the load across

queues is optimal for an on-off channel model. For a general

channel, the existence of an MTLB policy and its capability

to minimise average delay (when MTLB exists) are still open

questions. Kittipiyakul & Javidi [7] proposed and studied a

heuristic extension of the MTLB policy for a general channel.

Mohanram & Bhashyam [8] considered joint power and server

allocation to maximise throughput.

Tassiulas & Ephremides [9] characterised the stability re-

gion and proposed a policy that would stabilise the queues, if

at all it was possible to stabilise them. Their policy did not

depend on knowledge of arrival rates, and roughly speaking

routed traffic from the longest queue to the shortest queue

among connected links. The connections were either on or off

and were independent and identically distributed (iid) from slot

to slot. In the presence of channel uncertainty, the probability

of a connection was factored into the weights. The states of all

links in a slot were made available to the scheduler at the end

of the slot. Kittipiyakul & Javidi [7] considered multi-packet

transmission per server (all packets from the same queue), but

assumed that channel state information for a slot was available

to the scheduler prior to the start of the slot. Kar et al [1]

considered a practical setting where channel state information

is available only once every T slots and channel fading is

modeled by a Markov process. They proposed a policy based

on virtual queueing, and showed that within such a framework,

if there is some policy that will stabilise a set of arrival rates,

then so will their policy. The virtual queueing enables easy

computation of the best virtual-queue-based schedule.

In this paper, we propose two policies for Markov chan-

nels under channel uncertainty. They may be thought of as

extensions of the policies in Kittipiyakul & Javidi [7] to the

uncertain channel case. One of our proposed policies stabilises

the queue states for a set of arrival rates if at all any policy can;

this was not addressed by Kittipiyakul & Javidi [7] even for

the full information case. Our policies go beyond the virtual

queueing framework, and is superior to the one of Kar et al

[1] at low rates, as demonstrated by simulations results that

compare average backlog and delay across policies.

The rest of the paper is organised as follows. Section II

describes the system model and Section III the proposed

policies. Section IV makes some remarks about the stability

region for the system, Section V presents simulation results

and Section VI our conclusions.

II. SYSTEM MODEL

Consider a downlink system of N users with one queue

each. Each downlink queue may be thought of as a class

in the parlance of Tassiulas & Ephremides [9]. There are

K servers serving these queues. Transmission is slotted. In
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each slot, the scheduler decides how the servers are allocated

across users. Users then transmit their packets on the assigned

servers. The effect of the fading channel is modeled by the

physical layer’s ability to transmit a certain number of packets

from the set C = {0, 1, · · · , cmax}. As each user may see

a different channel on each server (as in the OFDM case),

the instantaneous channel state at slot t may be modeled as

C(t) ∈MN×K(C), a matrix of size N ×K with entries from

C. An element of the matrix Cnk(t) denotes the number of

packets user n can transmit on server k at slot t. For simplicity

we assume that C is the same for all user-server pairs. The

process (C(t) : t = 0, 1, · · · ) is assumed to be an ergodic

Markov chain.

Let b(t) = (b1(t), · · · , bN(t))† denote the queue state vector
at slot t where bn(t) is the queue size of user n at slot t.
Backlog is defined as the sum of the components of the queue

state vector.

Scheduling is done based on available channel and queue

state information. Success or failure of a transmission is known

only upon explicit feedback from the receiver. Similarly chan-

nel state information in frequency-division duplexed systems

is known only upon explicit feedback from the receiver. To

model these delays, we assume that channel states and the

results of transmissions are known only once every T slots,

which we call an interval. (The same model was used by Kar

et al [1]). More precisely, let the (l− 1)st interval be made of

slots (l−1)T, (l−1)T+1, · · · , lT−1. For scheduling decisions
in the lth interval, exact queue states and exact channel states

are assumed known for slot lT − 1. Decisions for other slots
in this interval have to be made at the start of the interval.

In conformance with existing wireless systems, we assume

that a server can serve at most one queue in a slot. A queue

however may connect to several servers. We may therefore

think of a bipartite graph with queues on the left side and

servers on the right with connections only between queues

and servers, and the degree of any server being at most 1.

The scheduler decides the connections between queues and

servers at each slot t in the interval, subject to the degree

constraint. Following terminology in [1], we refer to the set

of connections meeting the constraints as polymatching. The

scheduler further decides Rnk(t), the number of packets that

flows across the connection n to k. If Rnk(t) ≤ Cnk(t), the
connection capacity, then the packets are received correctly by

the receiver. Otherwise the entire transmission fails. Thus the

number of received packets is Rnk(t)1{Rnk(t) ≤ Cnk(t)},
where 1{·} is the indicator function of an event. This loss

model is motivated by systems that encounter outage if trans-

mission of data rate is higher than the unknown instantaneous

link capacity for the slot, and is different from the optimistic

model of Kar et al [1] where min{Rnk(t), Cnk(t)} is assumed

received.

III. SCHEDULING ALGORITHMS

We now present our policies for allocation under channel

uncertainty. For slot lT + m in the lth interval, 0 ≤ m < T ,

define

C̃nk(lT + m) = max
r

r Pr{r ≤ Cnk(lT + m) | Cnk(lT − 1)},
(1)

and Rnk(lT + m) to be the argument that achieves the

maximum. C̃nk(lT +m) is the maximum expected throughput

for user n on server k in slot (lT + m), given the channel

information for slot Cnk(lT − 1).
Policy 1:

1) Assign wn ← bn(lT − 1) for 1 ≤ n ≤ N .

2) Repeat the following for each slot m in the lth interval,

0 ≤ m < T .

a) Form the complete bipartite graph where every

queue is connected to every server.

b) Let X denote the set of unallocated servers.

c) Initialise X = {1, 2, ....., K}
d) While1 X 6= φ

i) Assign

(n∗, k∗)← argmax
n,k

wnC̃nk(lT + m).

ii) Skip. (Policy 2 is different in this step.)

iii) Choose the connection (n∗, k∗) for the poly-

matching and let Rn∗k∗(lT + m) packets be

transmitted in this slot2.

iv) Packets may be retransmitted. Packets are

chosen according to the lexicographical order

based on the pair (v, s) that is maintained for

each packet, where v is the number of times a

packet was transmitted and s is the sequence

number3.

v) Remove the server k∗ from the set X .

3) Update queue states and channel states based on infor-

mation from the receivers at the last slot of the interval

and reset v to 0 for all the packets at the start of every

interval.

Remark: Observe that in Step 2.d), because the weights wn do

not change, the search for queue-server connections separates

into K independent searches, one for each server, i.e., to each

server k, connect the queue

n∗(k)← arg max
n

wnC̃nk(lT + m).

The search simplifies to a small extent, because the search

for the maximum is restricted to within a set with at most N
elements.

Policy 2: This policy is the same as Policy 1, except for the

following insertion:

• Step 2.d.ii): Update

wn∗ ← [wn∗ − C̃n∗k∗(lT + m)]+,

1Repeat the algorithm until all the servers are allocated
2The queue that has the best queue-size weighted throughput on the server

is chosen.
3Preference is thus given to packets transmitted the fewest number of times

v, and amongst those transmitted the same number of times, to the one with
the smallest sequence number s, i.e., the earliest to arrive. The retransmissions
may occur on different servers.
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where [x]+ is 0 if x < 0 and x if x ≥ 0.
If all wn are zero, then reset wn ← bn(lT − 1) for 1 ≤
n ≤ N .

The motivation for these changes is that the weights can be

adapted to the decisions taken, based on the expected number

of packets that will go through. When all weights become zero,

then all packets have been transmitted roughly equal times, and

we may resume retransmissions with original weights.

The Kar-Luo-Sarkar (KLS) policy [1]: This policy main-

tains K virtual queues at each queue, one for each server,

in addition to the input queue. In all, there are NK + N
queues. Arrivals that occur during the intermediate slots of an

interval are held in the input queue and allowed to enter the

virtual queues only at the start of the interval. This virtual

queueing reduces the multi-server problem to K single-server

problems. Let Qnk denote the state of that virtual queue of

user n associated with server k.

1) Queueing: At the start of lth interval, all input-queued

packets of user n will enter this user’s queue associated

to server k if

k = arg min
k′

Qnk′(lT − 1).

2) Service: Compute for every queue-server pair, the weight

given by

Ĉnk(lT ) =
1
T

E




(l+1)T−1∑

t=lT

Cnk(t)
∣∣∣Cnk(lT − 1)




3) To server k, assign the virtual queue

n∗(k)← arg max
n

Ĉnk(lT )Qnk(lT − 1).

4) Rn∗(k)k(lT + m) packets will go through in slot (lT +
m) where Rnk(lT +m) is the argument that maximises

equation (1).

For the KLS policy in [1] no loss model is incorporated. There-

fore, average number of packets that go through is assumed to

be Ĉnk(lT ). To use their policy along with our loss model, we

use their polymatching and choose the transmission rate such

that the expected throughput is maximum for each connection

given the polymatching. Thus, for connection (n, k), the rate

attempted is Rnk(lT +m) which is the same rate attempted in

our proposed policies provided they chose this connection. The

difference between our proposed policies on the one hand and

the KLS policy on the other is that the KLS policy fixes the

connections for the entire interval. Our proposed policies adapt

them to changing estimated queue-size weights and predicted

channel conditions.

IV. STABILITY REGION

The definition of stability region is the standard one given

by Tassiulas & Ephremides [9, Defn. 1]. The space of queue

states may be partitioned into sets T, R1, R2, · · · where T is

the set of transient states and Rj , j = 1, 2, · · · are closed

sets of communicating states. A system is stable if the queue

state process satisfies the following: (1) it exits T in finite

time with probability 1, when initialised in any one of the

transient states; and (2) all other states are positive recurrent.

The stability region of a policy is the set of arrival rate vectors

λ = (λ1, · · · , λN )† under which the system remains stable

under the policy. The stability region of the system is the set

of arrival rate vectors for which there exists a policy under

which the system is stable. An optimal policy is one that

stabilises the system for any arrival vector in the stability

region. The work of Tassiulas & Ephremides [9] established

that an optimal policy exists for a wide class of multi-class

multi-queue network under perfect information available with

one slot delay. The KLS policy [1] is optimal under the

virtual queueing framework and with channel uncertainty.

Using techniques similar to those of Tassiulas & Ephremides

[9] and [1], we can show that our Policy 1 is optimal under

channel uncertainty. Further, our policies are not restricted

to within the virtual queueing framework, and are therefore

likely to fare better for low rates; simulations indicate that our

policies outperform the KLS policy at low rates in terms of

the backlog performance metric.

V. SIMULATION RESULTS

Consider a system with N = 6 users and K = 4 servers.

The channel state, in terms of the number of transmissible

packets in a slot, is modeled as a Markov chain. This Markov

chain is composed of smaller independently evolving and

identical Markov chains on four states, one for each user-

server pair. So C = {0, 1, 2, 3}. The transition probabilities

are given by the matrix



0.98 0.0067 0.0067 0.0067
0.0067 0.98 0.0067 0.0067
0.0067 0.0067 0.98 0.0067
0.0067 0.0067 0.0067 0.98




and the initial distribution is the stationary distribution on

each user-server pair. Arrivals to queues are truncated Poisson

with a maximum of 100 arrivals. Other parameters depend

on whether the scenario is symmetric or asymmetric. In the

symmetric case, all users have the same mean number per slot

λ. In the asymmetric case, users 1, 3, and 5 have mean arrivals

per slot of λ and users 2, 4, and 6 have mean arrivals per slot

of λ/2. The abscissa in all plots is the mean total arrivals per

slot, summed over all users. Backlog and delay are used as

metrics for comparison. Backlog is measured only at interval

boundaries. Simulations assume a finite queue size of 1000.

Packets arriving at a full queue are dropped, and therefore do

not contribute to either backlog or delay.

A. Average backlog comparison for a fixed T

Average backlog in packets/time-slot/user is calculated and

plotted for all described policies against total arrival rate in

Figures 1, 2, 3, and 4. T is set to 8. The symmetric case is

plotted in Figures 1, 2, and asymmetric case in Figures 3 and

4. From the plots, we infer that all the policies have similar

performance at high rates. However, our proposed policies

outperform the KLS policy at low rates as can be seen from
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the magnifications in Figures 2 and 4. Simulation results for

other values of T demonstrate the same qualitative behaviour.
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Fig. 1. Average backlog comparison for T=8 for symmetric arrivals at high
traffic
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Fig. 2. Average backlog comparison for T=8 for symmetric arrivals at low
traffic

B. Delay comparison for a fixed T

Figures 5 and 6 plot the delay of all transmitted packets

for the symmetric and asymmetric arrival cases, respectively.

For each policy, the figures contain a best and worst case

value for the delay distribution at each value of delay. We

observe that the proposed policies give significantly better

delay performance than the KLS policy for both symmetric

and asymmetric arrival cases. Results are shown for net arrival

rate of 6 and 4.5 for symmetric and asymmetric arrivals

respectively. Similar results were obtained for other rates in

the range 2 to 9.
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Fig. 3. Average backlog comparison for T=8 for asymmetric arrivals at high
traffic
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Fig. 4. Average backlog comparison for T=8 for asymmetric arrivals at low
traffic

C. Average backlog comparison vs T for a given algorithm

Figures 7 and 8 plot backlog of Policy 2 and the KLS policy,

respectively, across T . The plots are for symmetric arrivals.

The behaviour in case of asymmetric arrivals is qualitatively

the same. It is interesting to note that the stabilisable sum rate

remains roughly the same for all the considered T . Its exact de-

pendence on T remains to be studied. The transition behaviour

from a stable system to unstable queues is different across T ;

the performance degrades quite clearly with increasing T in

both figures.

VI. CONCLUSIONS

We proposed downlink scheduling policies for multi-queue

multi-server systems under channel uncertainty. Our poli-

cies provide better throughput at low rates than the virtual-

queueing-based KLS policy. Joint power control and schedul-
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Fig. 5. Delay comparison for symmetric arrivals, net arrival rate=6
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Fig. 6. Delay comparison for asymmetric arrivals, net arrival rate=4.5

ing, under channel uncertainty, is currently being investigated.
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