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Abstract— Consider a wireless relay network, where all nodes
except the source and destination act as relays. The problem
of evaluating the capacity for a source-destination pair in this
network and determining the corresponding optimal transmission
strategy have attracted considerable research attention recently.
However, even for a single relay, complete solutions are still
unknown. A popular method to obtain partial results is to fix the
relay strategy. In this paper, we consider a situation where relays
adopt the decode-and-forward approach with the possibility
of network coding. Also, the nodes can receive information
from multiple transmitters simultaneously. This is accomplished
by allowing physical layer interference processing at nodes.
This processing yields increased sum rate when compared to
interference avoidance or treating interference as noise. A linear
optimization model is proposed to determine the maximum
achievable throughput with interference processing. Numerical
evaluation done on some example networks shows significant
throughput gains.

I. INTRODUCTION

Consider a multihop wireless network represented by a

graph G = (V, E). In this paper, we wish to determine the
rate at which a single source node S ∈ V can communicate
to a sink node D ∈ V . Other nodes in V \{S, D} act as relays
in forwarding the message from S to D.
The capacity of a simple three-node relay network is still

an open problem. Several relaying strategies were proposed

to simplify this problem. These include strategies such as

amplify- and-forward relays or compress-and-forward relays.

Most of the strategies use Multiple Input Multiple Output

(MIMO) system cooperation and the results are asymptotic

in Signal-to-Noise-Ratio (SNR) [1], [2], [3].

In this work, we consider half-duplex wireless nodes with

the relays performing decode and forward communication

along with network coding. However, there is no cooperation

assumed either at the transmitter nodes or at the receiver nodes.

Further, we operate on the finite SNR regime.

In our network model, each node transmits at the same

rate using the wireless multicast advantage [4] to reach its

neighbours in a single hop. This advantage of wireless nodes is

modeled and exploited in [5] using hyperarcs. While hyperarcs

characterize one-to-many transmission, they do not allow

many-to-one or many-to-many transmission. With advanced

physical layer processing, a node can get information from

multiple transmitters simultaneously, i.e. nodes can operate

with interference as well [6]. In this paper, we model many-to-

many transmissions using hyperedges. A hyperedge is denoted

by (I, J), where I is the set of transmitters and J is the
set of receivers. Broadcast Channels (BC), Multiple-Access

Channels (MAC) and Interference Channels (IC) are examples

of channels that can be modeled as hyperedges. Our hyperedge

model is different from the physical model of [7] where

interference is treated as noise.

Using the capacity region of a hyperedge (I, J) determined
in [8], we formulate an optimization model for determining the

network coding unicast throughput from the source to the sink

in the network. Numerical evaluation of throughput using the

optimization model on a combination network and a diamond

network shows significant gains in the network throughput.

The throughput gain for combination network is around 30

% whereas it is around 16 % for the diamond network. We

bound the throughput by transforming the given network into

a layered network.

The paper is organised as follows: Section II describes

various schemes to handle interference at the physical layer

and the link layer. The wireless network model is described

in Section III. The linear programming optimization model

for unicast capacity is detailed in Section IV. Numerical

evaluations of the optimization model is explained in Section

V. Bound on network throughput is derived in Section VI.

Advantages of interference processing is dealt in Section VII

and Section VIII concludes the paper.

II. INTERFERENCE IN WIRELESS NETWORKS

Consider the network shown in Fig. 1(a). Let Nodes a
and b want to communicate Node c. Let Cac and Cbc be

the capacities of the link (a, c) and (b, c) and Cac = Cbc.

If both nodes a and b transmit simultaneously, it causes
interference at the sink node c. The interference at the Node
c can be handled in many ways. In wireless networks, slotted
transmission and link scheduling are mostly commonly done to

avoid interference. This time sharing rate region is the region

OAB in Fig. 1(b).

Alternatively, the interfering signal can be treated as noise

while decoding the desired user signal at the physical layer.

This rate region is the region OCDE as shown in Fig. 1(b). Re-

gion OBFGA is obtained by processing the interference using

advanced physical layer processing. From the rate regions, we

observe that processing the interference has better sum rate

than the other methods. This promises substantial gains in

the throughput. Hence, in this paper, we study the wireless
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(a) An example network
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Fig. 1. An example network and rate regions.

network throughput when the nodes are allowed to perform

interference processing.

III. WIRELESS NETWORK MODEL

Consider n-node wireless packet networks. All nodes are
half-duplex and have uniform transmission range cn. The

network is modeled as a graph, G = (V, E), where V =
{1, 2, · · · , n} is the set of vertices and E = {(i, j) : dij ≤
cn, i, j ∈ V } is the set of edges. Here, dij is the Euclidean

distance between Node i and Node j. A link (i, j) ∈ E is
lossless and has a capacity Cij packets per unit-time. Let

Ni = {j ∈ V : dij ≤ cn} be the set of neighbors of Node
i. In such a network G, we consider a single unicast session
from a source S ∈ V to a destination D ∈ V .
Consider a hyperedgeH = (I, J) where I = {t1, . . . , tM}
is the set of transmitters and J = {r1, r2, . . . , rN} is the set
of receivers. Let VH = I ∪ J be the set of vertices in H and
EH ⊆ {(ti, rj) : ti ∈ I, rj ∈ J} be the set of edges in H.
For each v ∈ VH, define the neighbouring sets Γ+(v) = {ti ∈
VH : (ti, v) ∈ EH} and Γ−(v) = {rj ∈ VH : (v, rj) ∈ EH}.
Let d±v = |Γ±(v)| be the incoming/outgoing degrees. Let A
denote the set of all hyperedges in G.

r1 r2 rN−1 rN

t2 tMt1

R1 R2 RM

Fig. 2. An example of a hyperedge along with transmission rates

An example of such a hyperedge is shown in Fig. 2. The

transmitter tk ∈ I sends a common message at rate Rk to the

receivers in Γ−(tk) and not to all receivers in J . This is a sin-
gle hop communication using the inherent wireless broadcast

nature. The power and bandwidth remain the same as that of

the point-to-point communication. Receiver rj ∈ J needs to
decode the codewords from the transmitters in Γ+(rj). These
receivers employ Interference-Aware Physical Layer (I-APL)

processing techniques like successive interference cancellation

for successful decoding.

IV. OPTIMIZATION MODEL

For the single unicast session from the source S ∈ V to the
destination D ∈ V , we now describe the linear programming
model to determine the network throughput. Before that, we

quickly explain the selection of non-interfering graphs for

avoiding the interference between hyperedges and the slotted

transmission scheme.

A. Non-interfering subgraphs

To avoid interference between hyperedges, slotted transmis-

sion is employed. A set of non-interfering hyperedges, called

a non-interfering subgraph of G, is active in each slot. Two
hyperedges (I1, J1) and (I2, J2) ∈ A are non-interfering, if
(i) (∪i1∈I1Ni1) ∩ J2 = ∅, and (ii) (∪i2∈I2Ni2) ∩ J1 = ∅.
Otherwise, the hyperedges are said to be interfering.

The conflict graph approach of [9] is used to form the non-

interfering subgraphs. Each node in the conflict graph corre-

sponds to a hyperedge fromA. Two nodes in the conflict graph
are connected if the corresponding hyperedges interfere in G.
It is easy to see that every independent set in such a conflict

graph will correspond to a non-interfering subgraph of G. In
our numerical evaluation, for simplicity, we use an algorithm

that generates one random independent set of the conflict graph

in every run [9]. Note that we allow interference within a

hyperedge, but avoid interference between hyperedges.

B. Transmission slots and packet injection rate

To proceed with the model, we suppose that M maximal

non-interfering subgraphs of G have been generated (using
M runs of the conflict graph independent set algorithm) and

denote them A1, A2, · · · , AM . The multicast session is

modeled to be spread over M transmission slots in one time

unit. The duration of slot k corresponds to λk fraction of time

and the non-interfering subgraph Ak is active during slot k
(λk could be zero).

If (I, J) ∈ Ak, nodes i ∈ I transmit to nodes in Γ−(i)
during slot k. Let aIJ indicate the total fraction of time for

which the hyperedge (I, J) is active over M transmission

slots. Let ziIJ (packets per unit time) be the average rate at

which packets are injected by Node i ∈ I into the hyperarc
(I, J) averaged over all slots. The transmission rates ziIJ are

proportional to the ON-time aIJ . A multicast throughput of

f is achieved if f packets are sent from the source s and
received by all sinks t ∈ T in one time unit.

C. Linear programming for unicast throughput

We assume that all links in G have equal capacity i.e. Cij =
L for all (i, j) ∈ E. The constraints in the linear program are
described below.

Scheduling constraints: The scheduling constraints on aIJ

use the indicator function gk(I, J) defined as gk(I, J) = 1
if (I, J) ∈ Ak and 0 otherwise. Intuitively, the scheduling

constraints imply that aIJ is upper-bounded by the total time

for which the hyperedge (I, J) is active.
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Flow constraints: The flow variable xiIJj denotes the average

information flow rate from Node i to Node j ∈ Γ−(i) along
a hyperedge (I, J) towards the sink D. The average flows to
each sink satisfy the flow constraints at each node.

Capacity constraints: For each hyperedge (I, J), the capacity
region is stated in Lemma 1 of [8]. In that capacity region,

we fix the time sharing random variable Q as a constant for
simplicity. Therefore, for each hyperedge (I, J), the average
flows to each sink from Node i ∈ I along different j ∈ Γ−(i)
lies within the feasible rate region for the broadcast channel

(BC) from Node i to Γ−(i). Also for each hyperedge (I, J),
the transmission rates ziIJ are within the multiple access

channel (MAC) from Γ+(j) to Node j ∈ J .

The linear program is as follows: Maximize the throughput

f subject to

Scheduling Constraints:∑

k

λkgk(I, J)− aIJ ≥ 0, ∀(I, J) ∈ A,

∑

k

λk ≤ 1, λk ≥ 0,

Flow Conservation Constraints:∑

{(I,J)∈A: i∈I}

∑

j∈Γ−(i)

xiIJj −
∑

{(J,I)∈A : i∈I}

∑

j∈Γ+(i)

xjJIi =





f if i = S

−f if i = D

0 otherwise
, ∀i ∈ V,

Capacity Conservation Constraints:

BC: ziIJ −
∑

j∈Γ−(i)

xiIJj ≥ 0, ∀ i ∈ I, ∀ (I, J) ∈ A,

ziIJ ≥ 0, xiIJj ≥ 0,

MAC:
∑

i∈B
ziIJ ≤ aIJI(X(B); Yj |X(Bc)), B ⊆ Γ+(j),

∀ j ∈ J, (I, J) ∈ A.

Every feasible solution to the linear programming problem

corresponds to a valid network code of throughput of f packets
per unit time over M slots with each slot active for λk

fractional time units [5], [10].

V. NUMERICAL EVALUATION

We evaluate the throughput using the proposed optimization

model on (i) a diamond network and (ii) a (5, 4) combination
network . We assume all the links are AWGN channels with

capacity one. The number of hyperedges in wireless networks

is typically very large. Hence, we consider only the hyperedges

shown in Fig. 3 along with their subgraphs for ease of

numerical evaluation. We run the conflict graph scheduling

algorithm 3,000 times to generate sufficient number (say M)

of non-interfering subgraphs which obtain good estimate of

network throughput.

r1

t1

ri rN r1

t1 ti tM

r1r1

r2 r2

t3t2t1

r1 t2 r2

t1

t2

t1

t1

r1

t2

r3r2

t1

r2 r3

t2 t3

r1

Fig. 3. Hyperedge channels used for numerical evaluation.

A. Diamond network

Consider the diamond network shown in Fig. 4(a). The

optimization model is evaluated with the seven hyperedge

channels shown in Fig. 3 to determine the throughput from the

source S to the destination D. The non-interfering subgraphs
chosen are shown in Fig. 4(b). The throughput is bounded

by the broadcast cut at the source and the multiple-access

cut at the Sink. Therefore, f ≤ min(1, 1.4037). The unicast
throughput with these seven hyperedges is f = 7

12 whereas it

is f = 1
2 with interference avoidance. Notice that, the MAC

channel in A2 is very useful in obtaining higher throughput.

b

a

DS

(a) Diamond network.

b

a

D

b

a

S

A2, λ2 = 5
12

A1, λ1 = 7
12

(b) Non-interfering subgraphs.

Fig. 4. Unicast throughput of a diamond network.

Transmission scheme: Consider twelve time slots and seven

information bits. In the first seven slots source broadcasts

all the seven information bits to Nodes a and b. The MAC
channels in A2 operate at the point (RaD, RbD) = (1, 2

5 ) to
enable interference processing. The nodes a and b select the
codebooks accordingly. In slots 8 − 12, Nodes a and b use
their MAC codebooks to transmit all seven information bits to

sink D i.e., 5(RaD + RbD) = 7.

B. (5, 4) combination network
Consider the (5, 4) combination network shown in Fig. 5(a).
The optimization model is evaluated with the seven hyperedge

channels shown in Fig. 3 to determine the throughput from the

source S to the destination D. The non-interfering subgraphs
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(a) (5, 4) combination network.
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(b) Non-interfering subgraphs.

Fig. 5. Unicast throughput of a (5, 4) combination network.

chosen are shown in Fig. 5(b). The unicast throughput is

bounded by the broadcast cut at the source and the multiple-

access cut at the sink. Therefore, f ≤ min(1, 1.8502). The
unicast throughput with these seven hyperedges is f =
0.6491 ≈ 9

14 whereas it is f = 1
2 with interference avoidance.

Notice that, the MAC channel in A2 is very useful in obtaining

higher throughput. This implies that interference processing at

the receivers helps in obtaining higher throughput

Transmission scheme: Consider fourteen time slots and nine

information bits. In the first nine slots source broadcasts all

the nine information bits to Nodes 3, 4, 5 and 6. The MAC
channels in A2 operate at the point (R3D, R4D, R5D, R6D) =
(1, 0.40, 0.25, 0.15) to enable interference processing. The
Nodes 3, 4, 5 and 6 select the codebooks accordingly. In slots
10 − 14, Nodes 3, 4, 5 and 6 use their MAC codebooks to
transmit all nine information bits to sink D i.e., 5(R3D +
R4D + R5D + R6D) = 9.

VI. BOUND ON NETWORK THROUGHPUT

In this section, we suggest approaches that simplify the

computations and provide approximate solutions for large

networks. For networks with large number of nodes, the linear

programming problem becomes unsolvable because of the

exponential number of variables and constraints. To do this,

the given network G is transformed into a layered network GL

in a manner explained below. Each layer in GL is a hyperedge.

Let m be the number of layers in GL. The construction of GL

is as follows:

(i) Start with source node S as the root node on GL.

Therefore, the hyperedge associated with layer 1 is (I1, J1) =
(S, NS).
(ii) Any kth intermediate layer in GL is constructed as:

Ik = Jk−1,

Jk = N(Ik) \ Ik,

for k = 2, 3, . . .. Here N(Ik) = ∪i∈Ik
Ni. This procedure con-

tinues until the sink node is contained in the mth hyperedge

i.e., D ∈ Jm. The layered network is also useful to derive a

bound on the network throughput.

A. Upper bound on the layered network throughput

The information flow f ′ in GL from source node S to
sink node D is through the layers in it. Therefore, the flow
f ′ is restricted by the minimum of the maximum amount of
information flow in each layer i.e.,

f ′ ≤ min
1≤k≤m

Rk
s ,

where Rk
s is the maximum amount of information flow in the

kth layer (hyperedge). Notice that, this bound does not account

for interference between hyperedges and half duplex nature of

wireless nodes.

Now, we investigate the sum rate of the kth hyperedge

(layer) (Ik, Jk). This is the maximum amount of information
flow from the transmitters in ti ∈ Ik to the receivers in

rj ∈ Jk. Let Xi be the codeword sent by transmitter ti and
Yj be the codeword received by receiver rj .

Each transmitter ti ∈ I sends a common information to all
its receivers at rate Ri. Therefore, this rate Ri is bounded by:

Ri ≤ Ci, (1)

where Ci = minj∈Γ−(ti) I(Xi; Yj). Since mutual information
is a non-negative quantity, the simplest upper bound on the

sum rate of the hyperedge with interference processing Rk
s is

the following:

Rk
s =

∑

ti∈Ik

Ri ≤
∑

ti∈Ik

Ci. (2)

However, tighter bounds on the sum rate of the hyperedge

(Ik, Jk) with interference processing can be obtained by
considering additional bounds on the MAC reception at the

receivers from [8].

VII. ADVANTAGES OF INTERFERENCE PROCESSING

We consider some example hyperedge channels to illustrate

the benefits of physical layer interference processing.
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A. Orthogonal channels

In the hyperedge H, let M = N and ti be connected only
to the receiver ri, for all i = 1, 2, . . . , M . This forms a set
of M parallel independent channels in H. Therefore, the sum
rate in H with interference processing is:

Rs =
M∑

i=1

Ci.

This is also the sum-rate achievable with interference avoid-

ance. It implies that interference processing is not useful in

orthogonal channels when compared to interference avoidance.

B. Complete bipartite graph

Suppose the hyperedge channel H is complete i.e., each
transmitter ti ∈ I is connected to all receivers rj ∈ J . The
sum rate possible with interference processing is bounded as

Rs =
M∑

i=1

Ri,

≤ min
rj∈J

I(X(Γ+(rj)); Yj). (3)

In interference avoidance, a receiver is allowed to receive

from only one transmitter.Therefore, the sum-rate with inter-

ference avoidance is the maximum of the transmission rates

maxti∈I Ri.

In (3), if the links are AWGN channels with equal trans-

mission power P , the bound becomes

Rs ≤ min
rj∈J

1
2

log2

(
1 +

MP

σ2
j

)
,

where σ2
j is the noise variance at the receiver rj . With

interference avoidance, the corresponding bound is

Rs ≤ max
rj∈J

1
2

log2

(
1 +

P

σ2
j

)
.

For the complete bipartite graph example,we see that the

sum rate can potentially improve because of interference

processing. In section V, we notice significant gains in the

network throughput because of the increased sum-rate in each

hyperedge. In general, when the receivers in J receives signals
from multiple transmitters, it is very useful to use interference

processing.

VIII. CONCLUSION

We considered wireless relay networks with the relays

adopting decode-and-forward strategy and performing network

coding. We allowed the transmitters to do common broadcast

transmission and the receivers to do interference processing

but did not require either MIMO cooperation or asymptoti-

cally large SNR. An optimization model was formulated to

determine the network throughput. Numerical evaluation on

some example networks promises substantial gain in network

throughput because of the interference processing at the re-

ceivers.
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