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Abstract

This paper presents a reduced-complexity, fixed-point algorithm and efficient real-time VLSI ar-
chitectures for multiuser channel estimation, one of the core baseband processing operations in
wireless base-station receivers for CDMA. Future wireless base-station receivers will need to use
sophisticated algorithms to support extremely high data rates and multimedia. Current DSP im-
plementations of these algorithms are unable to meet real-time requirements. However, there ex-
ists massive parallelism and bit level arithmetic present in these algorithms than can be revealed
and efficiently implemented in a VLSI architecture. We re-design an existing channel estimation
algorithm from an implementation perspective for a reduced complexity, fixed-point hardware im-
plementation. Fixed point simulations are presented to evaluate the precision requirements of the
algorithm. A dependence graph of the algorithm is presented and area-time trade-offs are devel-
oped. An area-constrained architecture achieves low data rates with minimum hardware, which
may be used in pico-cell base-stations. A time-constrained solution exploits the entire available
parallelism and determines the maximum theoretical data processing rates. An area-time efficient
architecture meets real-time requirements with minimum area overhead.
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I. Introduction

Next generation wireless communication systems [1] have been designed to integrate features

such as high data rates varying up to 2 Mbps, Quality-of-Service (QoS) guarantees and multimedia

in the existing communication framework. This requires the implementation of highly sophisti-

cated and complex algorithms in real-time. There is a strain on existing hardware resources to

meet the requirements of these algorithms. Many algorithms proposed for next generation com-

munication receivers, which are designed to give good performance in terms of error rates, are not

feasible for a direct implementation. This is due to their high computational complexity, involv-

ing subroutines such as matrix inversions, which require floating point accuracy. Also, a typical

DSP or general purpose processor implementation [2] is unable to fully exploit the parallelism

and bit level computations available in these algorithms. Hence, there is a need to re-design these

algorithms and study their mapping on hardware to accelerate their implementation.

We develop a reduced complexity, fixed point algorithm and efficient VLSI architectures for

multiuser channel estimation, one of the most computationally challenging baseband tasks in the

base-station receiver. There have been several hardware implementations for multiuser detection

[3]. Most implementations either assume perfect channel estimation or assume single user es-

timation. However, many advanced channel estimation schemes [4, 5] have high computational

complexity due to matrix inversions involved and cannot be performed in real-time. Hence, typi-

cally in current IS-95 based systems, simpler single-user sliding correlator structures are used for

channel estimation [6]. We re-design a recently developed multiuser channel estimation algorithm

[7, 8], based on the maximum likelihood principle and develop an iterative scheme [9], which is

computationally effective, suitable for a fixed point implementation and is equivalent to matrix

inversion in terms of error rate performance. We also present a fixed-point analysis for multiuser

channel estimation to evaluate the precision requirements. We use fixed-point classes, developed

using C++ for this purpose.

We also analyze a dependence graph (DG) of the algorithm in order to find various area-time

trade-offs. Such an analysis is useful as many methods have been proposed for optimal area-time

mappings based on DGs [10, 11]. In previous work [9], we had used task-partitioning to find three
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different area-time tradeoffs. However, with DGs, a wide range of efficient area-time mappings can

be designed. In this paper, we design area-time mappings for three different architectures : an area-

constrained architecture, a time-constrained architecture and an area-time efficient architecture.

Architectures for the mobile handset have similar algorithms for implementation. ‘Blind’ ver-

sions [12] of these algorithms are available for the mobile handset. In this case, the channel is

synchronous and only a single user has to be detected. However, the architectural design consid-

erations for the mobile handset includes power-efficiency [13] and this also needs to be accounted

for in the design as a critical parameter. Though power savings are not as critical for a base-station

as for a mobile receiver, we address methods to attain power savings as a discussion section in the

end.

The organization of this paper is as follows. The next section provides an introduction to

multiuser channel estimation and its real-time requirements. The algorithm is re-designed from

an implementation perspective for a reduced complexity fixed-point solution, without loss in error

rate performance. Fixed-point simulations for multiuser channel estimation is presented in Section

3. Section 4 shows the DG of the algorithm and explains the nodes in the DG in detail. The various

area-time trade-offs based on the DG are shown in section 5. Area-constrained, time-constrained

and area-time efficient architectures are presented. A comparison is also made with a previous DSP

implementation. A discussion on obtaining power savings at the base-station is given in Section 6.

Conclusions and future directions are presented in Section 7.

II. Multiuser channel estimation

Next generation wireless communication systems [14] use Wideband Code-Division Multiple

Access (W-CDMA) as the multiple access protocol for communication. This scheme uses spread

spectrum signaling, where each mobile user applies a unique signature sequence (spreading code)

to modulate the data bits. The base-station receives a summation of the signals of all the active

users after they travel through different paths in the channel. These channel paths induce different

delays, attenuations and phase-shifts to their signals and the mobility of the users causes these
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parameters to change over time (called fading). Moreover, the signals from different users inter-

fere with each other (Multiple Access Interference) adding to the Additive White Gaussian noise

present in the channel. Multiuser channel estimation refers to the joint estimation of these unknown

parameters for all users to mitigate these undesirable effects and accurately detect the received bits

of different users. Algorithms for interference cancellation or multiuser detection require the use

of such highly accurate estimates of the channel for proper detection.

The performance advantages of using multiuser channel estimation is shown in Figure 1. The

top curve shows the bit error rate of a single user channel estimator (sliding correlator) followed

by a single user matched filter detector for varying SNR. The next curve shows the performance of

multiuser channel estimation with a single user matched filter detector. The bottom curve shows

the performance of multiuser channel estimation with multiuser detection. From the figure, we can

observe that multiuser channel estimation can give significant performance improvements in bit

error rates, especially if used with multiuser detection. However, this performance improvement

comes at a cost of increased computational complexity and increased precision requirements.

A. Real-time requirements

Data transmission in 3G wireless systems such as 3GPP or UTMS is possible at varying rates

such as from 32 Kbps to 2 Mbps depending on the spreading factor (
�

) which varies from 256 (for

vehicular traffic) to 4 (for indoor environments) respectively (for example, see [15]). The standards

assume a chip rate of 4.096 Mcps and Quadrature Phase Shift Keying (QPSK) modulation (2

bits/symbol). We have assumed Binary Phase Shift Keying (BPSK) modulation (1 bit/symbol) in

our work for simplicity. Hence, we target data rates in the range of 16 Kbps to 1 Mbps.

To illustrate the advantages of dependence graphs for area-time mappings, we implement our

design assuming a spreading factor of 32 chips per data bit as an example. A spreading factor (
�

)

of 32 can support 32 users ( � ) and we shall use
�������

and � ����� in our design specifications.

This implies that the real-time requirement of the joint estimation and detection scheme is to detect

input data bits at a rate of 128 Kbps i.e. a bit of every user has to be estimated and detected in less

than 7.8125 � s, assuming that the estimation and detection blocks will be pipelined. However, by

different area-time mappings for varying spreading gains, we can target a wide range of real-time
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requirements of multiuser channel estimation. Note that the reference to 3G systems is solely as

an example to illustrate important system features such as the varying data rates which we seek to

target and the use of training sequences for channel estimation.

Though we are targeting multiuser channel estimation for every received bit for data rates, this

is done as a worst case implementation. Channel estimation updates can be done less frequently,

depending on the amount of fading present in the channel. Slowly fading channels require lower

channel estimation updates than fast fading channels.

B. Channel model

The model for the received signal at the output of the channel [7, 8] can be expressed as

��� � ��� ���	�
� (1)

where �������� is the received signal vector due to the bits of all � asynchronous users, spread

with a spreading factor
�

,
� ��������� ��������� �! �#"$�%��� � "%&%&%&'"(� � � �! �("(� � � �!)!* are the bits of � users to

be detected,
� �+� ���-, � is the actual channel, containing information about the spreading codes,

attenuation and delays from the various paths, �.� is the noise, which is assumed to be Additive

White Gaussian Noise (AWGN) and / is the time index. The channel
�

is to be estimated and used

for accurately detecting the received data bits of different users.

C. Maximum likelihood channel estimation

The channel estimation and detection block in the base-station receiver is shown in Figure 2.

The channel information is obtained by transmission of a pilot signal
�

, which is a sequence of

bits that is known at the receiver. The received pilot signal (01/3254�6 ) is compared with the known

bits to form an estimate of the channel. The decisions from the multiuser detection block 7 are fed

back to the channel estimation block along with the received data bits ( 8:9;6<9 ), delayed by the time

required for detection, for tracking the channel estimates when the pilot signal is absent.

The multiuser channel estimation algorithm is based on the maximum likelihood principle,

where the probability of received input given the transmitted bits is maximized. A basic sum-

mary of the algorithm and its computational aspects are presented here. More details along with
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comparisons with other schemes can be found in [8]. Consider
�

observations of the received vec-

tor � � " � � " &%&%&�" ��� corresponding to the known training bit vectors
� � " � � " &%&%&'" � � . Given the

knowledge of the training bits, the discretized received vectors � � , � � , & & & , ��� are independent and

each of them is Gaussian distributed. Thus, the likelihood function becomes

p � � �(" � � "%& & & " ����� � " � � " � � "�& & & " � ��� � 	
 � � exp

�� ��
��� � � ��� ��� � ����� � ��� ��� � ����� &

After eliminating the terms that do not contribute to the maximization, the log likelihood func-

tion becomes � ��
��� � � ��� � ��� ��� � � ��� ��� � ��� � &

(2)

The estimate �� , that maximizes the log likelihood, satisfies the following equation:����� �� �����! �&
(3)

The computations that occur during the estimation phase [7, 8] are:�"�! � 	� ��
��� � � � � �� (4)����� � 	� ��
��� � � � ��# � (5)

where
�

is the length of the pilot sequence,
�$�! � � �<�-, � is the cross-correlation matrix between

the synchronization bits
� � and the received signal � � and

����� � � ���-, ��� is the auto-correlation

matrix. The correlation matrices are averaged over a window of length
�

. The channel estimate

can be obtained by solving equation (3). The channel estimate
�

is fed to the detection block for

detecting the unknown bits. The detected bits , 7 , which are obtained at the detection stage, are

fed back to the estimation block for tracking purposes for a fading channel and to the rest of the

processing blocks in the base-station receiver.

To begin the matrix inversion, we have to wait till all the preamble bits are received and accu-

mulated as in equations (4)-(5). This results in additional delay before the start of computing the

estimates using equation (3). Tracking for a fading channel requires the rebuilding of the corre-

lation matrices and computing the inverse every time. This is computationally inefficient as this
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implies a matrix inversion for every update. Hence, a new scheme, based on gradient descent,

which begins the computations with the first received preamble bit and facilitates tracking for fad-

ing channels is presented in the next section.

The comparisons of our scheme with recursive least squares (RLS) has been shown in [16]. For

AWGN, the ML approach of our scheme and the MMSE approach of RLS lead to the same solution

and hence, have similar BER performance [16]. However, our scheme is more suited towards a

real-time implementation than RLS. Matrix decomposition techniques such as QR have been used

for updating the channel estimates for tracking using similar schemes based on RLS [17]. QR

is also numerically stable even with fixed-point computations [18]. The QR decomposition can

also be implemented efficiently in fixed-point using systolic arrays [19]. However, the cells in

the array (especially, the boundary cells which compute the Givens rotation) [17, 19] have more

computational complexity than the cells used in our iterative algorithm. Our proposed iterative

algorithm uses only truncated multipliers and adders and does not require any special boundary

cells. Hence, our proposed iterative algorithm has a lower hardware complexity than schemes

based on RLS.

D. Iterative scheme for channel estimation

A direct computation of the exact maximum likelihood channel estimate
�

involves the com-

putation of the correlation matrices
� ���

and
���! 

, and then the computation of
�  ���� �"�! at the end of

the preamble (pilot). The computation of the inverse at the end of the preamble is computationally

expensive and delays the start of detection beyond the length of the preamble until the estimate has

been computed and this delay limits the data rate. In our iterative algorithm, we approximate the

maximum likelihood solution based on the following ideas.

1. The product
�  ���� �"�! can be directly approximated using iterative algorithms such as the

gradient descent algorithm [20].

2. The iterative algorithm can be modified to update the estimate as the preamble is being re-

ceived rather than waiting till the end of the preamble. This means that the computation per

bit can be reduced by spreading it over the entire preamble.
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We present an iterative scheme based on the method of steepest descent for the matrix inversion.

The channel estimate
�

is updated iteratively every bit and is available immediately after the end

of the pilot sequence. The updating of the estimate is done using the iterative scheme as shown

below: � ������! � � ���  � ��! � � � � �� � � �! � � ��! � (6)� �������� � � ���  � ���� � � � ��# � � � �! � � # �! � (7)

� ����� � � ���  � � �
� � � ���������� � ���  � � � � ������! � (8)

where 6 represents the iteration count. This scheme is suitable for tracking, which is shown by

the removal of the oldest bit in the window of length
�

as the newest bit is received. Tracking is

simpler in this iterative scheme as the channel estimates and correlation matrices are updated itera-

tively. During the initial pilot phase, tracking is absent and the equations for correlation (equations

(6), (7)) reduce to the previous estimation scheme using inversion (equations (4), (5)). Another

advantage of this scheme is that it lends itself to a simple fixed-point solution, which was difficult

to achieve using the previous inversion scheme. There are no divisions except for the multiplica-

tion by the convergence parameter, � , which can be implemented as a right-shift, by making it a

power of two. This can be done as the algorithm is not highly dependent on the exact value of � .

This algorithm shows good convergence behavior as
�$���

is a symmetric, positive definite matrix

and has a small condition number.

Figure 3 shows the performance of both schemes, the iterative method and the previous scheme

using matrix inversion for a static multipath environment. The Bit Error Rate (BER) is calculated

using the channel estimates after the end of the pilot phase for two types of detectors, a Matched

Filter Detector (MF) [21, 22] and a Multistage Multiuser Detector (MUD) [23, 24], based on the

principle of Parallel Interference Cancellation (PIC). The simulations are carried out for a 15-

user system using a pilot of length 128 bits (power of 2). The users are all transmitting at the

same power over a static channel with 3 paths of relative strengths 1, 0.5 and 0.33. Although the

detection algorithm can handle the near-far problem, we simulated the equal power scenario as it

generates the worst case for multistage detection. The simulation was carried out for a detection
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window length of 10. The value of � for the iterative scheme was chosen to be 1/1024 (power

of 2). Walsh codes of length 32 were used. From the simulations, it can be observed that the

iterative scheme denoted by (ITER) in Figure 3 and Figure 4 essentially gives the same error rate

performance as that of the original scheme.

The analysis of the system for a multipath fading channel with tracking is as shown in Figure

4. Here we see that the proposed tracking scheme based on the update equations (6)-(7) is able to

effectively track the time-varying channel. The poor performance of the static channel assumption

for this Rayleigh fading channel (with mobile velocity 10 km/h) at a carrier frequency of 1.8 GHz

shows the importance of tracking. The simulation was done for 15 equal power users with a

window length of 128 (and preamble length of 128). For faster fading, the window length needs

to be decreased appropriately. The original channel estimation scheme requires a matrix inversion

and matrix multiplication for every update while the iterative scheme reduces the complexity to a

matrix multiplication per update.

III. Fixed-point implementation for multiuser channel estimation

Current CDMA-based systems such as IS-95 implement a single user channel estimator (sliding

correlator) and a single user matched filter receiver. This can be implemented with 8-bit precision.

However, for multiuser channel estimation, there is a cost of both increased complexity and in-

creased precision requirements in order to obtain BER performance benefits. In this section, we

discuss the effects of finite precision for multiuser estimation. For this purpose, we developed a

model of the system in C++ using fixed-point “classes” in order to study the performance of the

system with different precision requirements. The multiplications and addition operations were

“over-loaded” so as to saturate if the available precision were to be exceeded. Instead of exploring

a detailed theoretical analysis similar to [25], for simplicity, we choose to study the effects of finite

precision on multiuser channel estimation based on performance using simulations.

Since the received signal amplitude depends on the number of users in the system, the number

of multiple path reflections, the spreading gain and the signal-to-noise ratio, we developed a model
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to first calculate the amount of precision required by the A/D converter.

precision (in bits)
�

�������
� � � ���� 	 � � 	0 ��
 � 	����������� ��� �� � ��� ��
 (9)

Equation (9) was developed for quantization using the fact that the maximum amplitude of the

received signal would be � ��� �	 � � �	 , where � is the number of users and � is the number of

multipath reflections. The noise would be less than 
 � � �"! �! � with a probability of more than 0.99,

where
�

is the variance of the noise and
�

is the spreading gain. Four more bits for additional

precision are provided with one bit for the sign. This gives precisions in the range of 8-12 bits for

different users and spreading gains which is possible with current A/D converters.

We present two simulation results for finite precision with different spreading gains. Figure 5

shows the bit error rate performance of multiuser channel estimation for a spreading gain of 16 with

8 users. Figure 6 shows the performance for a spreading gain of 32 with 15 users. In each case,

we choose a preamble length of 128 and a � of 	$# 	� � 
 (chosen to be smaller than the reciprocal

of the largest eigenvalue of
� � � ���� for all / in order to ensure convergence [26]). The fixed-point

output of channel estimation was tested with floating point versions of the single user matched

filter detector [21, 22] and a multiuser detector based on PIC [23, 24]. Floating point detection was

used to ensure that the loss in performance was due to the effects of channel estimation alone. The

effects of fixed-point detection is studied in [16].

Based on the simulations performed, we have made the following observations:

1. Multiuser channel estimation has higher precision requirements in general than single user

channel estimation. Though lower precision implementations for multiuser channel estima-

tion can be constructed for specific values of
�

and � , to obtain generality and flexibility, we

need higher precision in the range of 13-16 bits for multiuser channel estimation as opposed

to sliding correlator implementations.

2. We see that 13-16 bit precision multiuser channel estimation performs almost as well as float-

ing point precision multiuser estimation. In fact, for
� � 	% and

� � ���
, the performance

begins to degrade only at 12-bit precision. It is also interesting to note from Figure 5 and
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Figure 6 that as soon as the minimum precision (13-bit) is obtained, there are no significant

benefits with additional precision for multiuser estimation.

3. The A/D quantization of the received chip-matched filter output does not require as much

precision as required for the computations. Reasonable precision of 8-12 bits for A/D con-

version is sufficient. For very high SNR, there could be some degradation due to the A/D

quantization as the quantization noise could be significant compared to the background noise.

IV. Dependence graph for multiuser channel estimation

A. Design specifications

The dynamic range of the input � is dependent on Signal-to-Noise ratio (SNR), the Multiple

Access Interference (MAI) and the number of users in the system. A detailed analysis is required

to determine the word-length of the input. For our design, we assume that the received signal, � , is

quantized by an A/D converter to have a fixed precision word-length of 8-12 bits, depending on the

spreading gain and the SNR as discussed in the previous section. We assume an implementation on

16-bit architectures as we have shown them to have sufficient fixed-point range. The area and time

requirements do not vary significantly with precision as they are more dependent on the spreading

gain. Also note that the blocks � , � �! and
�

are complex-valued while
�

and
� ���

are real-valued.

For the sake of convenience, we henceforth represent the current inputs
� � , ��� as

�
, � and

� �! � ,

���! � as
�

� , � � .

As an example, we choose a typical architecture as having spreading gain
�������

and the num-

ber of users � � ��� to target 128 Kbps/user. All architecture designs assume a single-cycle 16-bit

multiplication and addition. We justify this assumption to the following reasons. First, as seen in

Figure 10, the node for matrix multiplication in a systolic array needs to do a multiplication and

addition in the same amount of time and it is difficult to pipeline the multiplication further. Also,

we envision that such dependence graph mappings could be mapped to programmable processors

using mapping techniques as in [27], that may have single cycle multiplication and addition. This

assumption also helps in simplifying the DG mapping and helps us with DSP comparisons.
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We assume that a Wallace or Dadda multiplier tree [28] is used for multiplication requiring
� ��� � � 1-bit Full Adders (FA) for an � -bit multiplication. Since the multiplication by � in equation

(8) results in truncation of the output and need not be highly accurate for numerical stability, a

truncated multiplication using significantly less hardware [29] can be used. Such truncated multi-

plier schemes can offer 25-35% savings in the area of the multiplier, depending on the precision

requirements. For an area estimate of the architectures, we consider the number of 1-bit FA cells

in the design. We also assume that other blocks in a communication system such as those for

detection and decoding can be pipelined in a similar fashion with multiuser estimation.

B. Dependence graph

Dependence graph (DG) analysis [10] is a tool for mapping parallel algorithms into array struc-

tures. A DG is used to show the data dependencies between the operations. By mapping from a DG

design to a Signal Flow Graph (SFG) representation to parallel hardware, different VLSI architec-

tures with various area-time tradeoffs can be achieved. We choose to design a DG for the multiuser

channel estimation algorithm as there have been many methods proposed for efficient mapping of

algorithms [10] and area-time optimizations using dependence matrices [11] developed for parallel

processing. A systolic nature of the interconnections is used as it helps in avoiding broadcast data,

and eliminates problems such as clock-skew, fault susceptibility and peak-power present in global

interconnections [10]. A DG of the algorithm, based on equations (6)-(8), is as shown in Figure 7.

The figure shows the DGs for each of the sub-blocks of the algorithm. The block arrows represent

interconnections from all elements in a plane to the subsequent block (for clarity). The regular

arrows represent a systolic interconnection while the dotted lines represent independent process-

ing elements with no interconnections. The DG has been aligned such that the arrows represent

the direction of data flow. The sequence of operations in the algorithm is ordered on the DG. The

shaded portions in the DG are individual elements and non-systolic.

Step 1 refers to the DG for
� ���

along the �5/ "�� � -plane. This is then fed to the �5/ "�� � -face of the

matrix multiplication DG cube
� ��� � � ���  � �

. The previous value of the channel estimate
� ���  � �

is

applied to the �5/ "�� � -face of the cube. The output
�$��� � � ���  � �

is then produced on the � � "�� � -face

of the cube in step 2. At the same time, the cross-correlation matrix
�$�! 

is also computed in the
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� � " � � -plane. The loop of steps 2,3,4 of the DG represent the computations present in equation

(8). It can be observed from Figure 7 that the bottleneck in the DG is the matrix multiplication����� � � ���  � �
in equation (8) and we shall concentrate on this part in our architectures. The nodes

of the DG are explained below.

1. Node for auto-correlation

The structure of the
� ���

autocorrelation node is shown in Figure 8. This figure shows the nodes

of the three different processing elements in the autocorrelation block along with their wordlengths.

Since
�����

is symmetric, we need to compute only a triangular part of the matrix. Figure 8(a) shows

the nodes for / � � � � �
�
�
. The node consists of a XNOR gate to compute the multiplication

(multiplication between +1 and -1 is an XNOR operation). This is then sent to an UP/DOWN

counter, loaded with the previous value of
�$���

which increments or decrements by one based on

the XNOR gate output (different for
�

and
�

� ). The output
� ��� � / " � � is then mapped on the � / " � �

face of the cube for the matrix multiplication. Figure 8(b) shows the nodes for / � � � � � . The

counter is always incremented as all the diagonal elements of
�$���

are 1’s ( 9�� 9 � 	 ). Figure 8(c)

shows the nodes for / � � � � �
� 	 . The inputs cross-over at this node so that just the

�
-axis

input is able to serve both the / " � nodes.

2. Node for cross-correlation

The structure of the
� �! 

autocorrelation node is shown in Figure 9. This figure shows the

nodes of the three different processing elements in the cross-correlation block along with their

wordlengths. The node consists of an adder/subtracter block which updates the stored value of���! 
, based on the value of the input � and the sign of

�
.

3. Node for matrix multiplication

The structure of the matrix multiplication node [10] is shown in Figure 10. Matrix-matrix

multiplication results in a DG cube, with inputs, being applied at two faces and the output emerging

from the third face. The input operands are sent along the
�

and
�

axes and the dot product is
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computed along the / -axis. Note that though we expect a 24-bit output at the multiplier, the result

is truncated to 16-bit precision.

4. Other processing elements

The two processing elements shown with shaded blocks in Figure 7 are non-systolic in the

sense that they do not have any transmittent data and are independent elements. Figure 11 shows

the detailed nodes in these two processing elements.

V. Mapping to VLSI architectures

In this section, we explore different area-time tradeoffs, based on the dependency graph. We

saw the matrix-matrix multiplication in Figure 7 was the bottleneck and we concentrate on it for

different mappings. We observe the area and time requirements for three different mappings : an

area-constrained, a time constrained and an area-time efficient mapping. A comparison with a DSP

implementation is also made in this section.

A. Area-constrained architecture

In order to obtain an area-constrained architecture, we seek to minimize the number of process-

ing elements, required in the DG of Figure 7. A mapping for an area-constrained architecture of

multiuser channel estimation is as shown in Figure 12. Each basic node is implemented just once.

The iterations in order to compute the elements for the entire array are shown by loops around the

node. The location of the loop represents the direction in which an iteration is folded on a single

element. The architecture is shown for computing only the real part of the channel estimate. Since

there are no multiplications between two complex numbers, the architecture can be assumed to be

replicated for the imaginary part. In this architecture, all matrix elements are computed an element

at a time. The matrix-matrix multiplication cube of the DG in Figure 7 is compressed in all three

directions requiring only a single multiplier and taking 
 � � � or 128,000 cycles (the time taken to

compute the entire matrix). The hardware requirements for an area-constrained architecture are as
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shown in Table 1. The design requires an 8-bit counter, a 16-bit multiplier and four 16-bit adders.

128,000 clock cycles takes 262 � s on a clock rate of 500 MHz, giving us a data rate of 3.81 Kbps.

Thus, we see that the area-constrained architecture fails to meet real-time requirements.

B. Time-constrained architecture

Theoretically, each node of the DG of Figure 7 can be mapped to a separate processing element

for a time-constrained architecture. However, since we choose to make the DG systolic to avoid

broadcast data, the output takes
� � or 64 cycles to compute the dot product. However, if the data

is broadcast and the dot product per output element is computed using a tree structure, the output

can be formed every

�����
� � � � � � 	 or 7 cycles. This is because each element of a

� � �
product

matrix can be computed in

� � �
� � � ��� 	 time using

� �

multipliers and using a tree structure to

compute the inner products [30], in a time-constrained architecture. The hardware requirements

for the time-constrained architecture are as shown in Table 2. There is a high speedup in time

obtained compared to the area-constrained architecture which shows the potential parallelism in

the architecture. For a typical architecture, the number of FA cells required is 40,000,000. This is a

highly aggressive solution for today’s silicon technology and it is infeasible to devote so many FA

cells just for channel estimation, which is only a part of the complete receiver. However, this states

the theoretical minimum time requirements by exploiting the available parallelism as

� � �
� � � � � � 	

or 7 cycles, which is the time required to do the parallel multiplication and pipelining it with the

other blocks. We require
� � � � � � � 	 � 16-bit adders for doing the recursive doubling [30] in� � �

� � � � � time (adding
� � elements in

� ���
� � � � � time requires � � � � 	 � adders) and

� � � 16-bit

adders for the subtraction following the multiplication. 7 cycles takes 14 ns on a 500 MHz clock,

which translates into a data rate of 71.43 Mbps. Thus, we see that the time-constrained architecture

does meet real-time but with a significantly large area overhead.

C. Area-Time efficient architecture

From comparing the above two architectures in Table 4, we see that the area-constrained ar-

chitecture does not meet real-time requirements while the time-constrained architecture is highly

aggressive in area. So, a tradeoff point in the design space needs to be found, which meets the real-
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time requirements with minimum area overhead. This can be done by observing that the major part

of the chip area is used for the array of multipliers. Hence, instead of computing the entire matrix

product in parallel, the product should be computed element by element by starting
�

computa-

tions in parallel. This would imply
� �

or 64 multipliers. The mapping for an area-time efficient

architecture is shown in Figure 13. Here, an array of
�

multipliers along the
�
-axis is shown.

From the figure, we can observe that the output is computed
�

elements every
� � cycles. Thus,

this would require 
 � � or 4000 cycles for the complete
� � � channel estimate.

The hardware requirements for an efficient area-time architecture are as shown in Table 3. This

design requires
�

multipliers to compute
�

elements every
� � cycles and

�
16-bit adders. This

design requires about 20,000 FA cells and finds the estimate in 
 � � cycles. 4000 cycles implies 8

� s on a 500 MHz clock, giving a data rate of 128 Kbps. Thus, the area-time efficient architecture

meets real-time with minimum area overhead.

From compressing the DG in Figure 7 in different directions and axes, we can obtain sev-

eral other intermediate mappings. When the data processing requirements change due to different

spreading gains or in order to target other data rates, a different intermediate real-time efficient

architecture needs to be obtained. For example, if the target data rates double, a new area-time

efficient architecture can be achieved by adding another row of
�

-multipliers to Figure 13. How-

ever, we need to ensure that all the processor computation and communication rates are satisfied.

A more formal method of finding real-time architectures is by using dependence matrices and find-

ing area-time optimizations or by developing a compiler that does the scheduling, as in [11, 27].

However, the process becomes difficult when the algorithms become complicated and more global

optimizations need to be performed. We are investigating this further as future work.

D. Comparisons with DSPs

An architecture comparison of the different VLSI architectures with a DSP is evaluated in

this section. Though DSPs and general purpose processors with MMX-enhanced instruction sets

can exploit byte-length parallelism, they are inefficient for bit level parallelism. Storage of bits

on such a processor is either inefficient as it is stored as bytes or a large overhead is involved in

packing and unpacking these bits. Also, the compiler may not take advantage of the fact that most
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multiplications are with bits and replace them with additions or subtractions. Also, formation of

bit-level matrix updates as seen in the different VLSI architectures is much more effective and

simpler to build in hardware with XNOR gates, giving
� � 	 � performance with

� � � � � or 1000

XNOR gates, while it may take
� � � � � or 1000 cycles on a DSP.

Assuming a 500 MHz clock for the VLSI architectures, the projected time required to compute

the channel estimate along with the hardware required for 32 users and a spreading code of length

32 is as shown in Table 4. This is compared with a DSP implementation of the revised algorithm

on a TI TMS320C6701 DSP at 167 MHz. The channel estimation DSP implementation takes 50

ms for all 32 users or 0.64 Kbps/user. The poor performance of the DSP is due to its inability to

exploit parallelism and inefficient bit storage. The inherent parallelism present in the algorithm can

be seen from the ratio of time taken for computation by the area-constrained and time-constrained

architectures. The area estimates are compared using the number of FA cells needed in the design,

as shown in Table 4. We can observe that the area-constrained architecture does not satisfy real-

time constraints of 7.8125 � s while the time-constrained architecture is far too aggressive. The

area-time efficient architecture meets the next generation real-time constraints by designing the

area-time tradeoff for 8 � s.

VI. Power savings

Though power issues are not critical from a base-station perspective, there are several tech-

niques that could be applied to the iterative multiuser estimation scheme that could result in power

savings. Apart from the basic reduction in power due to a VLSI implementation, it has been shown

in [29, 31] that the use of truncated multiplication can have a savings of 25-35% in hardware and

29-40% savings in the power dissipated by the multipliers, depending on the precision. Since most

of the area in the multiuser channel estimation design is consumed by multipliers, this could result

in significant power savings. Also, on-line arithmetic techniques [32, 33] based on digit-serial

computations can be applied to multiuser channel estimation to provide significant savings in area

and power due to digit-serial hardware. Techniques such as disabling parts of the filter taps that
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are not needed in case of better BER performance than necessary as in [13] for multiuser detection

could also be considered for multiuser channel estimation. For example, the iterative updates for

multiuser channel estimation could be stopped when performance is better than necessary. The

reduction in computations in turn relates to power savings.

VII. Conclusions

We present a reduced complexity algorithm for multiuser channel estimation, which has been

re-designed from an implementation perspective. The algorithm is massively parallel and is suit-

able for a fixed-point VLSI implementation. We show that there is no loss in the algorithm per-

formance due to this re-design of the algorithm. Simulations show that 13-16 bit precision is

sufficient for producing close to floating point performance. A dependence graph of the channel

estimation algorithm is presented to evaluate different area-time tradeoffs. We present mappings

for three area-time tradeoffs: an area-constrained architecture, a time-constrained architecture and

an area-time efficient architecture. An area-constrained architecture achieves low data rates with

minimum hardware, which may be used in pico-cell base-stations. A time-constrained solution

exploits the entire available parallelism and determines the maximum theoretical data processing

rates. An area-time efficient architecture meets real-time requirements with minimum area over-

head. A wide range of real-time architectures can be designed with different area-time mappings

using DGs. Thus, by re-designing algorithms from an implementation perspective and mapping

them to real-time architectures using DGs, VLSI solutions for other processing blocks such as

detection and decoding can also be built for a complete real-time ASIC baseband receiver.
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Table 1: Hardware requirements for an area-constrained architecture

Blocks Quantity FA cells Complex Total

Counter 1*8 8 - 8

Multiplier 1*16 256 *2 512

Adders 
 � 	% 64 *2 128

Total FA cells 648

Total Time (Cycles) 
 � � � 128,000

Table 2: Hardware requirements for a time-constrained architecture

Blocks Quantity FA cells Complex Total

Counter
� � � � � 	% � � - 	% � �

Multipliers 
 � � � � 	 % 	� � 
 � � � *2
� � 
 � � � �

Adders 
 � � � 	% � % 
 � � *2 	 � � � � �
 � � � � 	 % � % 
 � � � 	 � � � � �
Total FA cells N=K=32 40,000,000

Total Time(Cycles)

� ���
� � � � �
� 	 7

Table 3: Hardware requirements for area-time efficient architecture

Blocks Quantity FA cells Complex Total

Counter 	 *8 8 - 8

Multipliers
�

*16
� � % � *2

� 	 � �
Adders 
 � � � 	% % 
 � *2 	 � � �

Total FA cells N=K=32 20,000

Total Time(Cycles) 
 � � 4,000
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Table 4: Comparisons between different architectures

Architecture FA cells Data Rates/User

Area-Constrained 648 3.81 Kbps

Time-Constrained 40,000,000 71.43 Mbps

Area-Time 20,000 128 Kbps

TMS320C6701 DSP - 0.64 Kbps

Real-Time Requirements 128Kbps
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Figure 1: Performance benefits of multiuser channel estimation
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Figure 3: Error rate performance for a static multipath channel. This figure shows the error per-

formance for two detectors, a matched filter detector and a multiuser detector for both channel

estimation schemes: the inversion based scheme and the iterative scheme. The simulations were

done for 15 users at equal powers with a spreading gain of 32. The channel is assumed to be static

with AWGN and 3 paths. A pilot sequence of 128 bits was used initially to obtain the channel

estimates. A detection window of 10 bits was used for the multiuser detector.
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Figure 4: Error rate performance in a multipath fading channel. This figure shows the error per-

formance of both estimation schemes in the presence of slow fading at 10 km/h mobile velocity

at a carrier frequency of 1.8 GHz. The matrix inversion based scheme assumes a static channel

and is not updated with decision feedback, while the iterative scheme is updated every bit. The

convergence parameter, � , is chosen as 1/1024. Other parameters are the same as for Figure 3.

28



4 6 8 10 12 14 16
10

−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
IT

 E
R

R
O

R
 R

A
T

E

MATCHED FILTER DETECTOR
MULTIUSER DETECTOR     

FLOATING POINT 

13−16 BIT 

13−16 BIT, FLOATING POINT 

12 BIT 

12 BIT 

Figure 5: Fixed point error rate performance of multiuser channel estimation for N = 16, K =

8. The figure shows the effect of quantization of multiuser channel estimation on a single user

matched filter receiver and a multiuser detector.
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Figure 6: Fixed point error rate performance of multiuser channel estimation for N = 32, K =

15. The figure shows the effect of quantization of multiuser channel estimation on a single user

matched filter receiver and a multiuser detector.
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equation (8)
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Figure 12: Area-constrained VLSI architecture mapping. This figure shows an area-constrained

mapping for multiuser estimation. Each basic node is implemented just once. The iterations in

order to compute the elements for the entire array are shown by loops around the node. The

location of the loop represents the direction in which an iteration is folded on a single element.
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Figure 13: Area-time efficient VLSI architecture mapping. This figure shows an area-time efficient

architecture for multiuser estimation. Each basic node is replicated
�

times. The iterations in order

to compute the elements for the entire array are shown by loops around the node. The location of

the loop represents the direction in which an iteration is folded on a single element.
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