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Abstract— In this work, we analyze the diversity-multiplexing
performance of a MIMO multiple access wireless system with
non-cooperating transmitters. Each of the transmitters and re-
ceiver use noisy and mismatched versions of the channel estimate
to implement decentralized power control. While accounting
for the resources consumed in training, we show that with
relatively simple power control, regardless of the number of
transmitters, we can achieve double the maximum diversity order
of a system with no instantaneous channel state information at
the transmitters. Intuitively, the gain can be attributed to using
temporal degrees of freedom enabled by power control without
coding over multiple coherence intervals.

I. INTRODUCTION

In scenarios where many users attempt to communicate to a

single receiver, multiple antenna systems have been employed

to increase reliability or the supported data rates. A tradeoff be-

tween the two competing objectives when there is no channel

state information at the transmitter (CSIT) was proposed as the

diversity-multiplexing trade-off for the point-to-point MIMO

link [1] and later extended to the multiple access channel
(MAC)[2]. For quasi-static fading channels, it is known that

the order of diversity is the key to link-level performance.

To this end, several forms of feedback have been explored to

provide CSIT and improve the diversity-multiplexing trade-off

(DMT) in both point-to-point MIMO [3],[4] and MAC [5].

However, none of them account for errors and resource con-

sumption on the feedback channel.

A two-way channel formulation was used by the authors

in [6] to study the impact of errors in feedback while fully

accounting for all resource usage in forward and feedback

channels. The two-way formulation is suitable for systems

where the channel is symmetric or SNR-symmetric (same SNR

in both forward and reverse direction) on a per-link basis,

which is often true in time-division duplex systems. For the

case of SIMO channel (single input multiple output), the au-

thors showed that the maximum diversity order can be doubled

compared to a system which employs no feedback. The key

contribution in [6] was the two-way channel formulation and

an analysis which accounts for the mismatch in channel state

information at the transmitter and receiver.

In this paper, we extend the model of [6] to a MAC scenario.

The emphasis in the current work is on understanding in the

multi-user context how mismatch in the knowledge of channel

at the transmitters and receiver affects the system performance,

and if any of the diversity order gains predicted by perfect

feedback [3], [4] are achievable with information mismatch.

With K non-cooperating m-antenna transmitters adopting

decentralized power control and sending messages to a single

antenna at the receiver, we show that we can obtain single

user performance and nearly a two-fold improvement at all

multiplexing gains. The MISO (Multiple Input Single Output)

model is then extended to the general MIMO scenario where

we characterize an achievable DMT for low multiplexing

gains. In particular, we show that in a MIMO MAC system

with m antennas at each of the transmitters and n antennas

at the receiver, we can attain a maximum diversity of 2mn
regardless of the number of transmitters communicating to

the receiver, in contrast to only mn with no CSIT [2]. While

analyzing the multi-user DMT for MIMO, we also furnish

one possible method to extend [6] to the point-to-point MIMO

scenario for low multiplexing gain.

In Section II, we describe the two-way training model

and define outage events for the non-coherent receiver with

training. Section III contain the derivation of DMT for MISO

MAC and and Section IV extends the DMT to MIMO MAC.

We conclude in Section V.

II. SYSTEM MODEL

A. Channel Model

We consider a multiple access channel with K non-
cooperating transmitters communicating independent mes-

sages to a single receiver. The receiver and each of the

transmitters transmit over the same channel in a time-division

duplexed (TDD) manner. Each transmitter has an array of m
transmit antennas and the receiver has an array of n receive

antennas. We refer to such a system as a K transmitter m×n
MIMO multiple access channel. We assume a slow fading

scenario where the block length of time over which the channel

stays constant equal to l symbols is assumed to be long enough

to make outage errors dominate the total error probability for

the sytem [1][2], l−To ≥ Km+n−1 where To is the training

overhead corresponding to the number of symbols used for

training either the receiver or a transmitter.

The channel between transmitter i and the receiver is

represented by the n × m matrix Hit. Likewise the channel
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between the receiver and transmitter i is represented by HT
ir

where notation AT is taken to mean the transpose of A. We say

that Hit and Hir are symmetric and assume Hit = Hir = Hi.

In the current work, the proposed protocol requires only SNR-
symmetry such that the singular values of Hit and Hir are

the same. We statistically model {Hi}i=1,...,K to be i.i.d.

and unit variance zero mean circularly symmetric complex

Gaussian (ZMCSCG) entries, the richly scattered Rayleigh

fading environment.

The signal from the K transmitters to the receiver is given

by

Yr =
K∑

i=1

HiXit + Nr, (1)

where Xit ∈ C
m×1 is the complex, information bearing

symbol from the transmitter i, Yr ∈ C
n×1 is the output vector

and Nr ∈ C
n×1 is the additive noise. In the training phase,

the training signal from the receiver to the ith user is given

by

Yit = HT
i Xr + Nit, (2)

where Xr ∈ C
n×1 is the signal sent by the receiver (e.g.

feedback or training), Yit ∈ C
m×1 is the corresponding signal

received at transmitter i and Nit ∈ C
m×1 is the additive noise.

The noise at each of the receive and transmit antennas at each

time is i.i.d. unit variance ZMCSCG.

B. Training and Power Control

We build on the model of two-way training in [6] which

allows us to accurately model resource usage and address

mismatched information in a tractable fashion. The training

symbols, which adhere to the same power constraints as data

symbols, are transmitted at a constant power equal to the

average power constraint of the transmitter denoted by P .

Phase One of the training protocol begins with the trans-

mission of nτRT training symbols (τRT from each of the

receive antennas) from the receiver to the K transmitters.

The transmitters form the channel estimates as Ĥi ∀ i =
1, 2, . . . , K. The error in estimation H̃i is given by

Hi = Ĥi + H̃i. (3)

Then each of the K transmitters independently utilizes its

estimate Ĥi to decide the power control P (Ĥi) = κp(Ĥi)
where κ ∝ P and p(Ĥi) is dependent on the estimate Ĥi. The

receiver does not know the channel estimates {Ĥi}i=1,2,...,K

at the end of Phase One of training.

In Phase Two, the K transmitters take turns sending mτTR

training symbols to the receiver. For reasons explained in

detail in [6], the receiver tries to estimate the power controlled

channels Gi =
√

p(Ĥi)Hi. The power controlled channel

is again split into two parts Ĝi, the estimate of the power

controlled channel, and G̃i, the estimation error, such that

Gi = Ĝi + G̃i. (4)

The entries of G̃i and H̃i are ZMCSCG with variance

σ2
{G̃i,H̃i} =

1
τ{TR,RT}P

(5)

meeting the Cramèr-Rao bound. Phase Two of training is

followed by (l − nτRT −KmτTR) symbols of encoded data.

C. Outage Definition and DMT

Making the power control in Xi explicit, we say that

Xit =
√

P
(
Ĥi

)
Sitwhere Sit is the unit power complex

signal prior to power control. Let G = [G1G2 · · ·GK ], Ĝ =
[Ĝ1Ĝ2 · · · ĜK ] and R

(
P
)

=
[
R1(P ) R2(P ) . . . RK(P )

]
where Ri(P ) is the data rate from the ith user. Also let

α = (l − nτRT − KmτTR)/l account for rate loss due to

training overhead.

Using the ideas of [7, Section 3,4] for a non-coherent point-

to-point MIMO link, we define outage for the multiple access

non-coherent receiver with training. By an outage event, it is

indicated that the channel is so poor that given an estimate

of the channel state at the receiver, the target data rate is not

supported at least for a subset of the users.

Definition 2.1: For a multiple access channel with K trans-

mitters, each equipped with m transmit antennas and a receiver

with n receive antennas, the outage event is

O �
⋃
W

OW . (6)

The union is taken over all subsets W ⊆ {1, 2, . . . , K}, and

OW �
{

ε
(
Ĝ
)

: I(XW ; Y |XWc , Ĝ = Ĝ) < α
∑
i∈W

Ri

}
,

(7)

where ε
(
Ĝ
)

is the event that the power controlled channel for

K users G is estimated as Ĝ, XW = [XT
i1tX

T
i2t · · ·XT

i|W|t]
T ∈

C
|W|m×1 contains the input signals and fading coeffi-

cients respectively corresponding to the users in W =
{i1, i2, . . . , i|W|}.

In the above definition, the outage event OW corresponds

to correct decoding of information from users in Wc and

loss of information from users in W . When OW occurs, the

receiver would have decoded XWc transmitted by users in Wc

correctly. The receiver can without loss of optimality, cancel

its contribution from the received signals. Using (4), we can

write the resultant channel as

YW =Y −
∑

i∈Wc

ĜiSi

=
∑
i∈W

ĜiSi +
K∑

j=1

G̃jSj + Nr.

In order to capture the asymptotic performance of our

system, we analyze the diversity-multiplexing tradeoff (DMT)

derived in [1], where diversity, d is

d ≡ − lim
P→∞

log(Π(P , R(P )))
log( P )

, (8)
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which describes the rate at which Π, the probability of outage

event O defined in (6) and (7), falls with P at large P for

a particular target rate, R
(
P
)
. It is to be noted that we

fix a common diversity order requirement for all the users.

Multiplexing is defined as

ri ≡ lim
P→∞

Ri(P )
log( P )

, (9)

where ri quantifies the dependence of the target rate on the

average power constraint. We consider the symmetric case

where all users have the same rate requirement. The extension

to the general case with varying ri follows on the lines of [2].

From [2], we also see that

Pr(O) .= Pr(OW∗) (10)

where W∗ is the subset of {1, 2, . . . , K} with the slowest

decay rate of Pr(OW)1.

We consider Gaussian codes to determine an achievable

bound for the exponent of outage probability. From [8, Theo-

rem 1], we get

I(XW ;Y |XWc , Ĝ = Ĝ) = log det

⎛⎜⎝In +
κ
∑

i∈W
ĜiĜ

†
i

mσ2
V

⎞⎟⎠
(11)

where σ2
V = 1 +

κTr[∑K
j=1 G̃jG̃†

j ]
mn and In is the n dimensional

identity matrix. From (11), and noting that {Ĝi} are inde-

pendent and identically distributed, the outage probability for

event OW with |W| = s is given by

Πm,n
s = Pr

(
log det

(
In +

κ
∑s

i=1 ĜiĜ
†
i

mσ2
V

)
< sr log P

)
.

(12)

For the current work, we assume a joint ML detector. When

all the users have the same diversity order requirement, a joint
ML detector fares just as well as an individual ML detector

from the arguments given in [2, Section VII]. We note the

following Lemma extending [2] to the non-coherent receiver

with training.

Lemma 2.2: The curve dR̂
K,m,n( r

α′ ) for a non-coherent re-

ceiver with training and no side information at the transmitters

is the DMT derived in [2] shifted by a constant scaling factor

α′ = (l − KmτTR)/l following the arguments of [7].

III. CHARACTERIZATION FOR MISO MAC

We first consider the case where n = 1, a MISO system.

Let all the transmitters have an equal multiplexing gain of r
where

∑
i Ri = Kr log(P ).

Theorem 3.1: For the multiple access channel considered in

the current work, with a single antenna at the receiver, n = 1,

the achievable DMT is given by

d∗
MAC,m,1(r) =

{ (
2 − r

α

)
m 0 ≤ r < α

K

dR̂
K,m,n( r

α′ ) α
K ≤ r ≤ α′

K

(13)

1We use a(x)
.
= b(x) to mean limx→∞ a(x)

x
= limx→∞ b(x)

x
. Similar

definitions hold for ≤̇, ≥̇.

where α = (l − τRT − KmτTR)/l and α′ = (l − KmτTR)/l

account for the loss of rate due to training and dR̂
K,m,1(

r
α′ )

refers to the DMT for a MAC system with no CSIT and a

trained receiver.

Proof: When n = 1, we adopt the power control

motivated by [6]

P
(
Ĥi

)
= κ

1
γ̂i

, (14)

where γ̂i = ĤiĤ
†
i . It can be shown that the power control

algorithm in (14) is stable for m > 1. Also σ2
V = 1 + κζ̃′

m

where ζ̃ ′ =
∑K

j=1 G̃jG̃
†
j . We can therefore reduce (12) to

Πm,1
s = Pr

(
log

(
1 +

κ
∑s

i=1 ζ̂i

m + κζ̃ ′

)
<

sr

α
log P

)
, (15)

where ζ̂i = ĜiĜ
†
i . Rearranging (15), we get

Πm,1
s = Pr

(
κ

s∑
i=1

ζ̂i <
(
P

sr
α − 1

)(
m + κζ̃ ′

))
. (16)

Putting s = 1, we obtain the exponent of the outage probability

for a single user given in [9]. For s ≥ 1, we perform the

following manipulations.

We bound (16) by the sum of two terms that intuitively

separate the effects of uncertainty in the channel state at the

transmitters and the receiver. Let δ be a positive constant.

Πm,1
s ≤̇Pr

((
κ

s∑
i=1

ζ̂i < P ( sr
α +δ)

)⋂(
κζ̃ ′ < mP

δ
))

+ Pr

((
κ

s∑
i=1

ζ̂i < P
sr
α 2κζ̃ ′

)⋂(
κζ̃ ′ ≥ mP

δ
))

≤̇Pr

(
κ

s∑
i=1

ζ̂i < P ( sr
α +δ)

)
︸ ︷︷ ︸

Πm,1
s1

+ Pr
(
κζ̃ ′ > mP

δ
)

︸ ︷︷ ︸
Πm,1

s2

. (17)

The first term Πm,1
s1 arises out of uncertainty in the transmit-

ters’ Channel State Information (CSI) while the second term

Πm,1
s2 comes about from the uncertainty of CSI at the receiver.

We notice a slight similarity between (41) in [6] and (17).

However, as we shall see, unlike in [6], the partitioning in (17)

allows us tackle the multi-user situation better by removing the

effect of estimation error at the receiver completely.

Turning our attention to the second term Πm,1
s2 , we see that

Pr
(
κζ̃ ′ > mP

δ
)

=
∫ ∞

P δ

κ

fζ̃′(x)dx

(a)
=
∫ ∞

P δ

κ

1
Γ(m)σ2

G

(
x

σ2
G

)Km−1

e
− x

σ2
G dx

(b).=
(
P

δ
)Km−1

e−P
δ

. (18)

In (a) we have substituted the distribution for the χ2-square

variable with 2Km degrees of freedom and in (b), we have

substituted (5). Plugging the exponentially decaying error
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probability of (18) into (8), we see that any δ > 0 will

yield infinite diversity. The physical implication is that the

estimation error at the receiver will not alter the DMT apart

from imposing a training overhead. The error in channel state

information at the transmitter alone is the limiting factor.

We note that substituting for G in (4), we have

Ĝi =
1√
γ̂i

Hi − G̃i =
1√
γ̂i

Ĥ ′
i, (19)

where Ĥ ′
i is the receiver’s normalized estimate of the channel

between transmitter i the receiver. Equivalently, using (3), we

can write Ĥ ′
i in terms of Ĥi, the estimate of the channel at

the transmitter

Ĥ ′
i = Hi −

√
γ̂iG̃i

= Ĥi − H̃ ′
i, (20)

where H̃ ′
i =

√
γ̂iG̃i − H̃i is another noise matrix with

ZMCSCG entries and variance

σ2
H̃′

i

=
1

τRT P
+

γ̂i

τTRP

.=
(
P
)−1

. (21)

In essence, the estimate of the channel state at each transmitter

is a noisy version of the normalized estimate of the channel

state at the receiver with the mismatch given by σ2
H̃′

i

.

Let γi = Ĥ ′
iĤ ′†

i . From the definition of (19), we write

ζ̂i = γi

γ̂i
. Noting that κ ∝ P , the first term, Πm,1

1s , in (17) can

be recast as

Πm,1
1s

.=Pr

(
s∑

i=1

P
(1− sr

α −δ) γi

γ̂i
< 1

)
(22)

(c)

≤
s∏

i=1

Pr

(
P

(1− sr
α −δ) γi

γ̂i
< 1

)
(d).=

⎧⎨⎩
(

P
m(2− sr

α −δ)
)s

0 ≤ r < α(1−δ)
s

P
0

r ≥ α(1−δ)
s

where (c) arises out of the independence of {γi

γ̂i
}i=1,...,s and

(d) comes about from the analysis in [9] using (20) and (21).

Since the analysis of an upper bound to the outage proba-

bility is valid for any δ > 0, we make δ → 0+. Recalling that

Πm,1
s ≤̇Πm,1

1s , we get

Πm,1
s ≤̇

{
P

ms(2− sr
α ) 0 ≤ r < α

s

P
0

r ≥ α
s

(23)

We see from (23) that the DMT curve for error events OW
with |W| > 1 lie above the single user DMT curve up to

r ≤ α
s . Therefore, from (10), the resultant DMT is as given

in (13).

Remark 3.2: Unlike the case of no CSIT [2], where the

DMT is divided into lightly loaded and heavily loaded regions

with single user and K user performances respectively, we

get single user performance for almost the full range of

permissible multiplexing gain
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Fig. 1. Achievable DMT of a 4 transmitter 2×1 MAC system with τTR =
τRT = 10 symbols and coherence length l = 1000

We have plotted the DMT for a 4 transmitter 2×1 multiple

access channel in Figure 1 and compared it with the case

where there is no side-information at the transmitters.

IV. MIMO MAC FOR LOW MULTIPLEXING GAINS

We now consider a general MIMO system with n ≥ 1
and show that at low multiplexing gains, there is a substantial

improvement in the DMT for the general scenario as well.

Theorem 4.1: For the multiple access channel considered in

the current work, with a general MIMO system, the achievable

DMT is given by

d∗MAC,m,n(r) =
{ (

2 − r
α

)
mn 0 ≤ r < α

K

dR̂
K,m,n( r

α′ ) α
K ≤ r ≤ min{m, n

K }α′
(24)

where α = (l−nτRT −KmτTR)/l and α′ = (l−KmτTR)/l

account for the loss of rate due to training and dR̂
K,m,n( r

α′ )
refers to the DMT for a MAC system with no CSIT and a

trained receiver.

Proof: Building on the analysis for a MISO MAC

system in Section III, we now construct an upper bound

for Πm,n
s for s = 1, 2, . . . , K. At transmitter i, let Ĥi =

[Ĥ(1)T
i Ĥ

(2)T
i · · · Ĥ(n)T

i ]T , where {Ĥ(j)
i }n

j=1 represent the es-

timates of the n parallel MISO channels from transmitter i to

the receiver. Each transmitter implements a worst case power

control

P
(
Ĥi

)
= κ

1
minj γ̂j

i

, (25)

where γ̂j
i = Ĥ

(j)
i Ĥ

(j)†
i . Note that κ ∝ P although different

from (14). Let the receiver implement selection and decode the

messages at the n antennas separately. As we are operating at

low multiplexing gains (Kr < α), we do not use the additional

degrees of freedom provided by the n antennas and instead

use them to improve reliability (diversity). Clearly, the outage

event OW for such a scheme occurs when all the n MISO

links are in outage. After removing the effect of receiver

estimation error at each of the the n MISO multiple access
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parallel channels, in the manner of (22), we get

Πm,n
s =

n∏
l=1

Pr

(
s∑

i=1

P
(1− sr

α −δ) γl
i

minj γ̂j
i

< 1

)

≤̇
n∏

l=1

Pr

(
s∑

i=1

P
(1− sr

α −δ) γl
i

γ̂l
i

< 1

)
(e)

≤̇ (
Πm,1

s

)n
.=

{
P

smn(2− sr
α −δ) 0 ≤ r < (1−δ)α

s

P
0

r ≥ (1−δ)α
s

(26)

where in (e) we note that the factors in the product are iden-

tically distributed multiple access MISO for l = 1, 2, . . . , n.

Setting δ → 0+, we again see that the DMT curve for error

events OW with s = |W| > 1 lie above the single user DMT

curve up to r ≤ α
s . Therefore, from (10), the resultant DMT

is as given in (24). We switch to a CSIR̂ system for r ≥ α
K .

In deriving the achievable DMT for multi-user MIMO

channel, we have also shown a method of extending the results

of [6] for a SIMO channel to the single user point-to-point

MIMO channel.

Corollary 4.2: The point-to-point MIMO link with the two-

way training model will achieve the DMT d∗
MIMO,m,n(r) given

below.

d∗
MIMO,m,n(r) =

{
mn

(
2 − r

α

)
0 ≤ r < α

dR̂
MIMO,m,n( r

α′ ) r ≥ α
(27)

where dR̂
MIMO,m,n( r

α′ ) is the fundamental DMT for a point-to-

point link for a trained receiver [7].

Proof: Put s = 1 in (26) to get the result.

In Figure 2, we have plotted the DMT for a 4 transmitter

2 × 2 MIMO multiple access channel and compared it with

the case where there is no side-information at the transmitters.

The benefit of single user performance at low multiplexing

gains enables us to approximately double the diversity order

in the range 0 ≤ r ≤ α
K . Moreover, for any K transmitter

m × n system, at zero multiplexing gain for all transmitters,

i.e. for a fixed rates not varied with power, the diversity order

is 2mn compared with mn in a CSIR̂ system irrespective of

the number of users. Such a gain can be ascribed to using

temporal degrees of freedom obtained from power control

without having to code over multiple uncorrelated coherence

intervals.

Since a multiple access channel cannot outperform a single-

user channel, we see that decentralized power control performs

quite well in our model at low multiplexing gains. For higher

multiplexing gains, centralized power control seems to become

necessary as the bound quickly falls off. Inversion with smaller

eigenvalues, second largest, third largest and so on, might

extend the range of multiplexing gain where our scheme of

decentralized power control is useful. But the analysis is much

more difficult.

Sub-optimal receivers like MMSE or successive cancelation
require the number of receive antennas to be larger than the
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Fig. 2. Achievable DMT of a 4 transmitter 2 × 2 system with τTR =
τRT = 10 symbols and coherence length l = 1000

number of transmitters, n > K. However, as noted in [2],

the constraint n > K is not fundamental. We have shown

that even with a few antennas at the receiver, we can obtain

substantial diversity for an arbitrary number of users over all

total multiplexing gains up to unity, 1
αKr < 1, with an optimal

joint ML receiver.

V. CONCLUSION

In this work, we analyzed multiple access systems using the
two-way formulation for feedback channel introduced in [6].
Our results clearly indicate that decentralized power control
by non-cooperating transmitters is extremely beneficial at low
multiplexing gains even when training the transmitters con-
sumes extra resources and has errors. The maximum diversity
in our model with noisy and mismatched channel estimates at
the transmitters and the receiver is double that achieved with
no side information at the transmitter [2].
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