
On the Sum Capacity of the Gaussian X Channel in
the Mixed Interference Regime

Praneeth Kumar V
ISRO Satellite Center

Bangalore 560017, India.
Email: praneethkumar7@gmail.com

Srikrishna Bhashyam
Department of Electrical Engineering

Indian Institute of Technology Madras, Chennai 600036.
Email: skrishna@ee.iitm.ac.in

Abstract—In this paper, we analyze the Gaussian X channel
in the mixed interference regime. In this regime, multiple access
transmission to one of the receivers is shown to be close to optimal
in terms of sum rate. Three upper bounds are derived for the
sum capacity in the mixed interference regime, and the subregions
where each of these bounds dominate the others are identified.
The genie-aided sum capacity upper bounds derived also show
that the gap between sum capacity and the sum rate of the
multiple access transmission scheme is small for a significant part
of the mixed interference region. For any δ > 0, the region where
multiple access transmission to one of the receivers is within δ
from sum capacity is determined.

Keywords—Gaussian X channel, sum capacity, mixed interfer-
ence, genie-aided bound, multiple access

I. INTRODUCTION AND PROBLEM STATEMENT

The Gaussian X channel consists of two transmitters and
two receivers where each transmitter has an independent
message for each receiver (see Fig. 1). A scalar Gaussian
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Fig. 1. Two user scalar Gaussian X channel

X channel in standard form is described by the following
equations:

Y1 = X1 + aX2 + Z1, (1)
Y2 = bX1 +X2 + Z2, (2)

where Z1, Z2 ∼ N (0, 1) and i.i.d in time. Transmitter i has an
average power constraint Pi i.e., 1

n

∑n
k=1E

[
X2
ik

]
≤ Pi. The

interference channel (IC) can be obtained as a special case of
the X channel by using only messages W11 and W22.

The sum capacity of the Gaussian Z channel is known [1].
The sum capacity of the Gaussian IC is known for the strong
[2], mixed [3], and noisy interference regimes [3–5]. The exact
capacity region or even the sum capacity of the Gaussian
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X channel are not fully known. Capacity approximations,
degrees of freedom results, and sum capacity for some channel
conditions are available in [6–9]. In [6, 7], degrees of freedom
results were derived and the interference alignment technique
was proposed. In [8], the sum capacity of the Gaussian X
channel was determined in the noisy interference regime. This
result is an extension of a similar result for the Gaussian IC
in [4]. The noisy interference regime corresponds to the set
of channel conditions (conditions on a and b) under which
treating interference from the cross links as noise is sum
capacity optimal for the Gaussian IC [4]. For the same regime,
treating interference as noise is also sum capacity optimal
for the Gaussian XC. Recently, in [9], the capacity region of
the Gaussian X channel was obtained to within a constant
gap of 4 bits. The focus in [9] was on channel conditions
where interference alignment is necessary. Channel realizations
where all channel gains are small (< 1) are ignored since their
capacity is bounded by a constant less than 4. To the best of
our knowledge, the only known sum capacity bounds for the
Gaussian X channel are the bounds in [6–9].

In this paper, we focus on the sum capacity of the Gaussian
X channel in the mixed interference regime, i.e., the regions
R1 = {(a, b) : a2 ≥ 1, b2 ≤ 1} and R2 = {(a, b) :
a2 ≤ 1, b2 ≥ 1}. The sum capacity and capacity region of
the Gaussian IC in the mixed interference regime have been
studied in [3]. The sum capacity is shown to be achieved
by the strategy that achieves sum capacity for the one-sided
weak Gaussian IC or the one-sided strong Gaussian IC. The
analogous one-sided channel for the X channel is the Z channel
[1] obtained by setting either a = 0 or b = 0. In [1], it was
shown that, for b = 0 and a2 ≥ 1, the sum capacity is equal
to the multiple access channel (MAC) capacity at receiver 1.
Similarly, for a = 0 and b2 ≥ 1, the sum capacity is equal
to the multiple access channel (MAC) capacity at receiver 2.
In this paper, we ask the following question: Is MAC at one
of the receivers sum rate optimal or approximately sum rate
optimal for some subregion of the mixed interference region
of the Gaussian X channel? Note that the sum rate of the MAC
at one of the receivers grows unbounded as a or b increases.
Therefore, even an approximate result with small or finite rate
gap is useful.

The main results in this paper are as follows.

1) A genie-aided sum capacity upper bound, CAU , valid
in the region {(a, b) : a2 > (P1 +1)2, b2 ≤ 1} ⊂ R1

is derived for the Gaussian X channel. An expression
for the gap between this upper bound and the MAC
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sum rate at receiver 1 is derived. The gap goes to
zero as a2 →∞.

2) Another genie-aided sum capacity upper bound, CBU ,
valid in the region {(a, b) : a2 ≥ 1, b2 < 1/(a2P2 +
1)2} ⊂ R1 is derived for the Gaussian X channel.
Again, an expression for the gap between this upper
bound and the MAC sum rate at receiver 1 is derived.

3) A simple sum capacity upper bound, CCU , valid in the
whole region R1, is then compared with the above
two genie-aided bounds. The sub-regions where each
upper bound provides the best bound are determined.

4) Using these bounds, the regime of possible (a, b)
where the gap between the upper and lower bounds is
less than an arbitrary δ > 0 is obtained (See Remark
5). We denote this regime Rδ (note Rδ ⊂ R1). Thus,
MAC at receiver 1 is δ close to optimal in terms of
sum rate in this subregion.

5) Similar results can be obtained for subregions of R2

by interchanging the roles of a and b, and P1 and
P2. In this subregion, MAC at receiver 2 is δ close
to optimal in terms of sum rate.

II. SUM CAPACITY BOUNDS IN REGION R1

In this section, we derive genie-aided upper bounds for sum
capacity of the Gaussian X channel in R1. We compare these
bounds with the sum rate achieved by MAC at receiver 1.

A. MAC strategy at receiver 1 and its sum rate

The strategy corresponding to MAC at receiver 1 is the
following. Messages to receiver 2, W21,W22, are not transmit-
ted, and messages W11,W12 are transmitted using the optimal
Gaussian MAC coding strategy to receiver 1. The sum rate
achieved by this strategy is given by:

RMAC,1 =
1

2
log2

(
1 + P1 + a2P2

)
. (3)

B. Genie-aided sum capacity upper bound CAU
Theorem 1: (a) For a Gaussian X channel with b2 ≤ 1

and a2 > (P1 + 1)2, the sum capacity of X channel Csum is
bounded as follows:

Csum ≤ RMAC,1 +
1

2
log2

(
1− P1+1

a2

1− (P1+1)2

a2

)
=: CAU . (4)

(b) For a Gaussian X channel with b2 ≤ 1 and a2 >
(P1+1)[(P1+1)22δ−1]

22δ−1 , we have Csum −RMAC,1 < δ.

Proof: (a) Consider the genie-aided X channel with side
information S1 given to the receiver 1. Let the side information
be S1 = X2 + ηW where W ∼ N (0, 1), and W is correlated
with Z1 with correlation coefficient ρ. We will find an upper
bound on the sum capacity of the genie-aided channel which
in turn is an upper bound to the original X channel.

Intuitively, we will argue all the messages decodable in the
original channel are decodable by the genie enhanced receiver
1. W11, W12 can be decoded reliably by the enhanced receiver
1 as they can be decoded in the original channel. W22 can be
decoded from S1 at the receiver 1 for η2 ≤ 1 because receiver
2 in the original channel can decode it from Y2. Then, using

the decoded W12, W22, the enhanced receiver 1 decodes W21

by cancelling the effect of X2 to get X1+Z1, which is a less
noisy signal than Y2 for b2 ≤ 1. Finally, we choose ρ to reduce
the gap between the sum capacity upper bound and the sum
rate of the MAC at receiver 1.

n(R11 +R12 +R21 +R22) = H(W11,W12,W21,W22)

= I(W11,W12,W21,W22;Y
n
1 , S

n
1 )

+H(W11,W12,W21,W22|Y n1 , Sn1 ) (5)

First, expand and bound the term
H(W11,W12,W21,W22|Y n1 , Sn1 ) as follows.

H(W11,W12,W21,W22|Y n1 , Sn1 )
= H(W11|Y n1 , Sn1 ) +H(W12|Y n1 , Sn1 ,W11)

+H(W22|Y n1 , Sn1 ,W11,W12)

+H(W21|Y n1 , Sn1 ,W11,W12,W22) (6)
(a)

≤ H(W11|Y n1 , Sn1 ) +H(W12|Y n1 , Sn1 ) +H(W22|Sn1 )
+H(W21|Y n1 ,W12,W22), (7)

where step (a) follows from the fact that conditioning reduces
the entropy. Since W11 and W12 have to be decodable at
receiver 1, using Fano’s inequality, the first two terms in (7)
can be bounded by n(ε1n + ε2n), where ε1n and ε2n tend to
0 as n → ∞. The next two terms can be bounded under the
conditions assumed for a2 and b2 in the theorem statement.

Consider the fourth term H(W21|Y n1 ,W12,W22) in (7).

H(W21|Y n1 ,W12,W22)

= H(W21|Xn
1 + aXn

2 + Zn2 ,W12,W22)
(b)
= H(W21|Xn

1 + Zn2 ,W12,W22)
(c)

≤ H(W21|Xn
1 +

Zn2
b
,W12,W22)

= H(W21|bXn
1 + Zn2 ,W12,W22)

(b)
= H(W21|bXn

1 +Xn
2 + Zn2 ,W12,W22)

= H(W21|Y n2 ,W12,W22)
(d)

≤ H(W21|Y n2 )
(e)

≤ nε4n, (8)

where (b) holds since Xn
2 is a deterministic function of

W12,W22, (c) holds since Xn
1 + Zn2 is a less noisy version

than Xn
1 +

Zn2
b for b2 ≤ 1, (d) holds because conditioning

reduces entropy, and (e) holds by Fano’s inequality and ε4n
tends to 0 as n→∞.

Now consider the third term H(W22|Sn1 ) in (7).

H(W22|Sn1 ) = H(W22|Xn
2 + ηWn)

(f)

≤ H(W22|Xn
2 + Zn2 )

(g)
= H(W22|Xn

2 + Zn2 ,W11,W21)
(h)
= H(W22|bXn

1 +Xn
2 + Zn2 ,W11,W21)

(i)

≤ H(W22|Y n2 )
(j)

≤ nε3n, (9)

where (f) holds since Xn
2 + ηWn is a less noisy version

of Xn
2 + Zn2 for η2 ≤ 1, (g) holds since W11 and W21

are independent of the other variables W22, Xn
2 and Zn2 ,

(h) holds since Xn
1 is a function of W11,W21, (i) holds
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because conditioning reduces entropy, and (j) holds by Fano’s
inequality and ε3n tends to 0 as n → ∞. Therefore, we have
H(W11,W12,W21,W22|Y n1 , Sn1 ) ≤ n(ε1n+ε2n+ε3n+ε4n) =:
nε, and

n(R11 +R12 +R21 +R22 − ε)
≤ I(W11,W12,W21,W22;Y

n
1 , S

n
1 ) (10)

= h(Y n1 , S
n
1 )− h(Y n1 , Sn1 |W11,W12,W21,W22)

= h(Y n1 , S
n
1 )− nh(Z1, ηW )

(j)

≤ nh(Y1G, S1G)− nh(Z1, ηW )

= nI(X1G, X2G;Y1G, S1G)

= nI(X1G, X2G;Y1G) + nI(X1G, X2G;S1G|Y1G)
= nRMAC,1 + nI(X1G, X2G;S1G|Y1G), (11)

where step (j) is because the Gaussian distribution
maximizes the joint entropy term. Now consider
I(X1G, X2G;S1G|Y1G) = I(X2G;S1G|Y1G) +
I(X1G;S1G|Y1G, X2G). The first term can be made zero if
[4, Lemma 8]

ηρ =
P1 + 1

a
. (12)

The second term I(X1G;S1G|Y1G, X2G) cannot be made zero
and is, therefore, the gap between the sum capacity upper
bound and sum rate achieved by MAC at receiver 1.

I(X1G;S1G|Y1G, X2G)

= I(X1G;X2G + ηW |X1G + aX2G + Z1, X2G) (13)
= h(X2G + ηW |X1G + aX2G + Z1, X2G) (14)
− h(X2G + ηW |X1G + aX2G + Z1, X1G, X2G) (15)

= h(ηW |X1G + Z1)− h(ηW |Z1) (16)

=
1

2
log2

(
1− ρ2

P1+1

1− ρ2

)
bits (17)

Note that we can choose any ρ2 ≤ 1 as long as (12) and η2 ≤
1 are also satisfied, i.e., we need to satisfy 1 ≥ ρ2 ≥ (P1+1)2

a2 .
Since (17) is increasing in ρ, to get the smallest upper bound,
we choose ρ2 = (P1+1)2

a2 . This gives the upper bound (4) in
the statement (a) of the theorem.

(b) The gap is bounded by δ if 1
2 log2

(
1−P1+1

a2

1− (P1+1)2

a2

)
<

δ. Simplifying this inequality results in statement (b) of the
theorem.

Remark 1: The gap between the sum capacity upper bound
and the sum rate of MAC at receiver 1 reduces with increasing
a2 and goes to zero as a2 →∞ (Some numerical examples are
shown in Fig. 4 of Section IV). To see this, rewrite the gap in
the form ln

(
1− x

v+1

1−x

)
, where v = P1 and 0 ≤ x = (P1+1)2

a2 <

1. Using Taylor’s series, ln (1− x) = −∑∞n=1
xn

n , for |x| <
1 , and we can bound as follows(

v

1 + v

)
ln

(
1

1− x

)
≤ ln

(
1− x

v+1

1− x

)
≤ ln

(
1

1− x

)
.(18)

for 0 ≤ x < 1. As x → 0, ln
(

1
1−x

)
goes to zero linearly

in x. Therefore, the gap between the upper and lower bounds
approches zero as a2 →∞.

Remark 2: The MAC at receiver 1 is δ close to optimal
in terms of sum capacity for most of the mixed interference
regime R1 except for a finite subregion.

Remark 3: Unlike the approximate sum capacity result in
this paper, an exact sum capacity result for a subregion of the
mixed interference regime is claimed in [10, Sec. 6, Thm. 4].
However, there is an error in step (iii) of the proof of Thm.
4 in [10] which allows the gap between the upper bound and
the MAC strategy sum rate to go to 0.

C. Genie-aided sum capacity upper bound CBU
Theorem 2: (a) For a Gaussian X channel with a2 ≥ 1

and b2 < 1
(a2P2+1)2 , the sum capacity of X channel Csum is

bounded as follows:

Csum ≤ RMAC,1 +
1

2
log2

(
1− b2(a2P2 + 1)

1− b2(a2P2 + 1)2

)
=: CBU .

(19)
(b) For a Gaussian X channel with a2 ≥ 1 and b2 <

(22δ−1)
((a2P2+1)22δ−1)(a2P2+1)

, we have Csum −RMAC,1 < δ.

Proof: (a) The proof technique is similar to the proof
of Theorem 1 (a) except that a different genie is chosen.
Consider the genie-aided X channel with side information
S1 = bX1 + ηW , where W ∼ N (0, 1) is correlated with Z1

and ρ is the correlation coefficient. A similar intuitive argument
as in Theorem 1 can also be made here. Here, W21 can be
decoded from S1 at the receiver 1 for η2 ≤ 1 because receiver
2 in the original channel can decode it from Y2. Then, using
the decoded W11, W21, the enhanced receiver 1 decodes W22

by cancelling the effect of X1 to get X2+
Z1

a , which is a less
noisy signal than Y2 for a2 ≥ 1.

Expand and bound the term
H(W11,W12,W21,W22|Y n1 , Sn1 ) as follows.

H(W11,W12,W21,W22|Y n1 , Sn1 )
≤H(W11|Y n1 , Sn1 ) +H(W12|Y n1 , Sn1 ) +H(W21|Sn1 )
+H(W22|Y n1 ,W11,W21), (20)

Since W11 and W12 have to be decodable at receiver 1, using
Fano’s inequality, the first two terms in (20) can be bounded
by n(ε1n + ε2n), where ε1n and ε2n tend to 0 as n→∞.

As done in (8), the fourth term H(W22|Y n1 ,W11,W21)
in (20) can be bounded as H(W22|Y n1 ,W11,W21) ≤
H(W22|Y n2 ) ≤ nε4n for a2 ≥ 1 since Xn

2 +
Zn2
a is a

less noisy version than Xn
2 + Zn2 . As done in (9), the third

term H(W21|Sn1 ) in (20) can be bounded as H(W21|Sn1 ) ≤
H(W21|Y n2 ) ≤ nε3n for η2 ≤ 1. Therefore, we have
H(W11,W12,W21,W22|Y n1 , Sn1 ) ≤ n(ε1n+ε2n+ε3n+ε4n) =:
nε. As done in equations (10) to (11), it can be shown that

n(R11 +R12 +R21 +R22 − ε)
≤ nRMAC,1 + nI(X1G, X2G;S1G|Y1G).

Now consider I(X1G, X2G;S1G|Y1G) = I(X1G;S1G|Y1G)+
I(X2G;S1G|Y1G, X1G). The first term can be made zero if [4,
Lemma 8]

ηρ = b(a2P2 + 1). (21)

The second term I(X2G;S1G|Y1G, X1G) cannot be made zero
and is, therefore, the gap between the sum capacity upper
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bound and sum rate achieved by MAC at receiver 1. It can
be shown that

I(X2G;S1G|Y1G, X1G) =
1

2
log2

(
1− ρ2

a2P2+1

1− ρ2

)
bits. (22)

Note that we can choose any ρ2 ≤ 1 as long as (21) and
η2 ≤ 1 are also satisfied, i.e., we need to satisfy 1 ≥ ρ2 ≥
b2(a2P2+1)2. Since (22) is increasing in ρ, to get the smallest
upper bound, we choose ρ2 = b2(a2P2 + 1)2. This gives the
upper bound (19) in the statement (a) of the theorem.

(b) The gap is bounded by δ if 1
2 log2

(
1−b2(a2P2+1)
1−b2(a2P2+1)2

)
<

δ. Simplifying this inequality results in statement (b) of the
theorem.

Remark 4: The gap between the sum capacity upper bound
and the sum rate of MAC at receiver 1 reduces with decreasing
b2 and goes to zero as b2 → 0 (based on the argument in
Remark 1).

D. Sum capacity upper bound CCU
Theorem 3: (a) For a Gaussian X channel with a2 ≥ 1,

the sum capacity of X channel Csum is bounded as follows:

Csum ≤ RMAC,1 +
1

2
log2

(
1 + b2P1

)
=: CCU . (23)

(b) For a Gaussian X channel with a2 ≥ 1 and b2 < (22δ−1)
P1

,
we have Csum −RMAC,1 < δ.

Proof: (a) The sum of the rates of the messages W11,
W12, and W22 is upper bounded by the sum capacity of the Z
channel obtained by setting b = 0 [11]. The sum capacity of
the Z channel for a2 ≥ 1 is RMAC,1 [1]. Thus, we have

R11 +R12 +R22 ≤ RMAC,1. (24)

It can also be shown easily that

R21 ≤
1

2
log2

(
1 + b2P1

)
. (25)

Combining (24) and (25), we get the bound on sum capacity
in statement (a) of the theorem.

(b) The gap is bounded by δ if 1
2 log2

(
1 + b2P1

)
< δ.

Simplifying this inequality results in statement (b) of the
theorem.

Remark 5: Combining Theorems 1(b), 2(b)
and 3(b), we get Rδ = {(a, b) : a2 >
(P1+1)[(P1+1)22δ−1]

22δ−1 , b2 ≤ 1}⋃{(a, b) : a2 ≥ 1, b2 <
(22δ−1)

((a2P2+1)22δ−1)(a2P2+1)
}⋃{(a, b) : a2 ≥ 1, b2 < (22δ−1)

P1
}.

E. Comparison of the upper bounds

For a given (a, b), the minimum of the upper bounds (i.e.,
CAU , CBU , and CCU ) that are defined at (a, b) is also an upper
bound. Here, we identify the subregions where each bound is
minimum. Using the difference between the expressions for
the bounds, we can easily show that:

(1) CAU < CCU when a2 > (P1 + 1)2 + (P1+1)
b2 .

(2) CBU < CCU when b2 < 1
(a2P2+1)

[
1

(a2P2+1) − a2P2

P1

]
.

(3) CBU < CAU when b2 < 1
(a2P2+1)

[
1

1+
a2P2(a2−(P1+1))

P1(P1+1)

]
.

A graphical illustration of the regions where each bound
is minimum is shown for a numerical example in Section IV.
CBU is minimum only when P2 is small compared to P1.

III. SUM CAPACITY BOUNDS IN REGION R2

In region R2, we have a2 ≤ 1, b2 ≥ 1. By the symmetry of
the model, results similar to theorems 1 and 2 can be obtained
by interchanging a and b, and interchanging P1 and P2. Here,
we write (without proof) only the upper bounds on the sum
capacity similar to Theorems 1(a), 2(a), and 3(a).

Theorem 4: For a Gaussian X channel with a2 ≤ 1 and
b2 > (P2 + 1)2, the sum capacity of X channel Csum is
bounded as follows:

Csum ≤ RMAC,2 +
1

2
log2

(
1− P2+1

b2

1− (P2+1)2

b2

)
, (26)

where RMAC,2 = 1
2 log2(1 + b2P1 + P2) is the sum rate

achieved by MAC at receiver 2.

Theorem 5: For a Gaussian X channel with b2 ≥ 1 and
a2 < 1

(b2P1+1)2 , the sum capacity of X channel Csum is
bounded as follows:

Csum ≤ RMAC,2 +
1

2
log2

(
1− a2(b2P1 + 1)

1− a2(b2P1 + 1)2

)
. (27)

Theorem 6: For a Gaussian X channel with b2 ≥ 1, the
sum capacity of X channel Csum is bounded as follows:

Csum ≤ RMAC,2 +
1

2
log2

(
1 + a2P2

)
. (28)

IV. NUMERICAL RESULTS

0 1 2 3 4 5 6
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6
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2

 

 

Region C

Region B

Region A

Fig. 2. Region where sum capacity is achieved within 0.2 bit, P1 = −3 dB,
P2 = −3 dB.

Fig. 2 shows the region in the (a2, b2) plane where MAC
at receiver 1 or MAC at receiver 2 achieves within 0.2 bit
of the sum capacity with power constraints P1 = −3 dB,
P2 = −3 dB. Region A corresponds to the regions obtained
in Theorems 1 and 4. Region B corresponds to the regions
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obtained in Theorems 2 and 5. Region C corresponds to the
regions obtained in Theorems 3 and 6. It can be seen that a
significant part of the mixed interference regime is covered by
these regions.

Fig. 3 shows the subregions in R1 where each of the three
sum capacity bounds is minimum for P1 = 0 dB, P2 = −5 dB.
Fig. 4 compares the sum rate achieved by MAC at receiver 1

0 2 4 6 8 10
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1

1.5
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2

b
2
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U CA

U
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U

Fig. 3. Subregions of R1 where each bound is minimum: P1 = −0 dB,
P2 = −5 dB
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Gap (CA
U − RMAC,1)

Gap (CC
U − RMAC,1)

Fig. 4. Comparison of sum rate of MAC at receiver 1 and sum capacity
upper bounds: P1 = −3 dB, P2 = −3 dB, b = 0.75.

with the upper bounds derived in Theorem 1(a) and 3(a) for
different values of a2. The gap is also plotted for each bound.
The gap with CAU reduces rapidly with increasing a2. Note
that CAU does not depend on the value of P2 and b, as long as
b2 ≤ 1. However, CCU depends on b.

Finally, in Fig. 5, the lower bound on a2 in Theorem 1(b)
is plotted as a function of P1 for various values of δ.

V. CONCLUSIONS

The sum capacity of the Gaussian X channel is exactly
known only in the noisy interference regime [8]. The approx-
imate capacity of the Gaussian X channel within a gap of 4
bits was recently obtained in [9]. In [9], the focus was on
channel conditions where interference alignment is required.
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δ = 0.5 bits

δ = 1 bit

δ = 5 bits

Fig. 5. Lower bound on a2 in Theorem 1(b) as a function of P1 for different
values of δ

In this paper, we focused on the Gaussian X channel in the
mixed interference regime and showed that multiple access
transmission to one of the receivers is close to optimal in terms
of sum rate in this regime. For any given δ > 0, the subregion
of the mixed interference regime where the achieved sum rate
is within δ bits of sum capacity was determined. Three upper
bounds were derived and the subregions where each bound is
tighter than the other two were obtained.
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