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Abstract— Channel feedback is delayed in all practical wireless
systems. Adaptive transmission strategies need to account for this
feedback delay in order to be effective. We consider multiple-
input single-output systems that perform power control based on
a delayed SNR estimate. For perfect channel state information
at the receiver (CSIR) and delayed channel state information at
the transmitter (CSIT), we derive an expression for the power
control function that minimizes outage probability at a constant
rate. For imperfect CSIR and delayed CSIT, we derive an upper-
bound on outage probability, and an expression for the power
control function that minimizes this upper-bound.

I. INTRODUCTION

The capacity and outage performance of multi-antenna
Gaussian channels with perfect channel state information at
the receiver (CSIR) and no channel state information at the
transmitter (CSIT) have been derived in [1]. Perfect CSIT can
significantly improve the outage performance [2]. However,
in most systems, it is impractical to assume that the trans-
mitter possesses error-free knowledge of the current channel.
Multiple-antenna systems with various types of partial CSIT
have been studied in [3], [4], [5]. The capacity of multiple-
antenna systems with mean feedback or covariance feedback
is discussed in [3]. Outage performance bounds for multiple-
input single-output (MISO) systems with power control are
analyzed for quantized SNR feedback in [4], while outage
performance bounds with beam-forming are analyzed in [5]
for quantized feedback of the channel realizations.

In this paper, we analyze the performance of multiple-
input single-output (MISO) systems with power control under
the assumption that the transmitter knows the channel SNR
estimate after a feedback delay. This is a realistic assumption
since the receiver usually feeds back some information (for
example, SNR) once every frame. Using the Gaussian nature
of the channel model, the effect of the feedback delay is
captured using a correlation coefficient ρ and the performance
is analyzed as a function of ρ. We choose to concentrate
our attention on power control since it is more beneficial to
use feedback for power control than for beamforming [4].
While beam-forming gives only a fixed gain, power control
improves the decay rate of the outage probability as a function
of average SNR. Moreover, power control requires only SNR
feedback, while beam-forming requires feedback of individual
channel coefficients.

First, we assume perfect CSIR and delayed CSIT, i.e., the
transmitter knows the exact SNR at some earlier time, and find
the power control function that minimizes outage probability.
Using the theory of “Calculus of Variations” developed by
Euler and Lagrange, we derive an implicit closed-form expres-
sion for the optimal power control function. Next, we relax the
perfect CSIR assumption as well, and derive a lower-bound to
the mutual information. Using this lower-bound, we upper-
bound the outage probability and derive the optimal power
control function. Finally, we consider maximizing the average
mutual information instead of minimizing outage probability
using power control.

II. PRELIMINARIES

A. Modelling feedback delay and estimation error

We assume a flat-fading Gaussian channel. The MISO
system with M transmit antennas and one receive antenna
is, as usual [1], [4], modelled by the equation:

y =

√
P

M
p(γ)hT x + η, (1)

hM×1, distributed as CN (0, IM×M ), is the vector of the
normalized channel gains, η (AWGN) is CN (0, 1), P is the
average SNR, p(γ) is the power control function that relies
on the transmitter’s estimate of the normalized SNR (γ), and
EΓ(p(γ)) ≤ 1 is the average power constraint. We note here
that the variance of each element in h and of η is 1, regardless

of the SNR or the number of antennas. The term
√

P
M

takes
care of the scaling due to SNR and multiple antennas.

Using the fact that the channel gains form a Gaussian pro-
cess, we can model the relationship between the old channel
and the current channel as

h = ρhold +
√

1 − ρ2 v, (2)

where hold and v are independent CN (0, IM×M ). For exam-
ple, in Jakes’ model, ρ = J0(ωd∆t), where ωd is the Doppler
frequency and ∆t is the feedback delay.

To model estimation error, we assume that the receiver uses
the MMSE estimate of the channel gains, as in [4]. The MMSE
estimate is derived using a preamble:

ĥ =

√
Pt

M

Pt

M
+ 1

(√
Pt

M
h + z

)
, (3)
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where Pt is the total power used for training and z is
CN (0, IM×M ).

The estimation error and feedback delay can be modelled
together to relate the current channel h and the estimate of
the old channel ĥold by the following equation:

h = ρĥold +

√
1 − ρ2

Pt

M
Pt

M
+ 1

w, (4)

where w is CN (0, IM×M ) and independent of ĥold.
We can also model the relationship between the old estimate

ĥold and the current estimate ĥnew by the relationship:

ĥnew = ρĥold +
√

1 − ρ2

√
Pt

M
Pt

M
+ 1

n, (5)

where ĥold is the MMSE estimate of the channel at some
earlier time. We note here that ĥold and n ∼ CN (0, IM×M )
are independent.

B. Calculus of Variations

The theory of Calculus of Variations, developed by Euler
and Lagrange, is a powerful tool used to solve problems
that involve finding the functions that maximize or minimize
a particular integral. Since there are many excellent books,
for example [7], that deal with the theory of Calculus of
Variations, we will only summarize the results that will be
used later on in this paper.

Suppose we want to find the function f(x) that will maxi-
mize or minimize the integral

∫ b

a

F (f, ḟ , x)dx

with respect to the equality constraints

φi(f, ḟ , x) = 0.

We define F̂ (f, ḟ , x) to be

F̂ (f, ḟ , x) = F (f, ḟ , x) +
N∑

i=1

λi(x)φi(f, ḟ , x), (6)

and solve the Euler-Lagrange equation

∂F̂

∂f
− d

dx

∂F̂

∂ḟ
= 0. (7)

III. POWER CONTROL TO MINIMIZE OUTAGE PROBABILITY

Outage is defined as the event where the channel SNR is
insufficient to allow transmission at a given rate. We will
assume here that the transmitter knows the SNR corresponding
to the receiver’s estimate of the channel at some earlier time.
For a particular value of the cross-correlation ρ, we seek to
find the power control function that minimizes the outage
probability. We consider two cases:

• Perfect CSIR and Delayed (but estimation-noise-free)
CSIT

• Imperfect CSIR and Delayed and Noisy CSIT

A. Perfect CSIR and Delayed CSIT

Assuming perfect CSIR, the mutual information
I(X;Y |h,hold) can be written as

I(X;Y |h,hold) = log

(
1 +

P

M
p(γ)ξ

)
nats/s/Hz, (8)

where ξ = ‖h‖2 and γ = ‖hold‖2.
To pose the problem of finding the optimal power control

function as a Calculus of Variations problem, we express the
probability of outage as:

Pr(outage) = Pr(I(X;Y ) < R)

=

∫
∞

0

fΓ(γ)Pr(outage|γ)︸ ︷︷ ︸
F (p,ṗ,γ)

dγ. (9)

The average power constraint can be written as an equality
constraint:

EΓ(p(γ)) − 1︸ ︷︷ ︸
φ(p,ṗ,γ)

= 0. (10)

From (9) and (10), we can write F̂ (p, ṗ, γ) (6) as:

F̂ (p, ṗ, γ) = fΓ(γ)Pr(outage|γ) + λ(γ)(EΓ(p(γ)) − 1).
(11)

After substituting the various density functions, we solve
the Euler-Lagrange equation (7) to get

λ(γ) =fΓ(γ)e−µγ β

p2(γ)

(
β

µγp(γ)

)M−1
2

× e−
β

p(γ) IM−1

(
2

√
µβ

γ

p(γ)

)
,

(12)

where µ = ρ2

1−ρ2 and β = eR
−1

P

M

(µ+1). Ir(x) is the modified
Bessel function of the first kind with order r.

Now we numerically find the λ(γ) such that the resultant
p(γ) satisfies the power constraint and the non-negativity
constraint. We have observed that the λ(γ) that corresponds
to the optimal p(γ) is a scaled version of the density function
fΓ(γ). With this observation we can cancel out fΓ(γ) on both
sides of (12). This leads to faster convergence, especially in
the regions where fΓ(γ) is small.

B. Extension to Imperfect CSIR and delayed CSIT

Using a method similar to that used in [4], we derive
a lowerbound to the average mutual information. The final
expression is given below. The details of this derivation are
given in the Appendix.

I(X;Y |ĥnew) ≥T − M

T
log

(
1 +

Pdp(γ̂)ξ̂

M (1 + σ2Pdp(γ̂))

)

=
T − M

T
Ilb(X;Y |ĥnew)

(13)

where γ̂ = ‖ĥold‖2, ξ̂ = ‖ĥnew‖2, σ2 = 1
Pt

M
+1

, Pt is the total

training power, Pd is the average data power, and T is the
frame length.
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This bound can be further tightened by maximizing over
(Pt,Pd), such that the total power constraint (Pt + (T −
M)Pd = PT ) is satisfied. Using the same approach as in
[4], we find, for T � M , the optimal power splitting to be
(Pt,Pd) = (PM ,P ).

Using this bound and results from the theory of Calculus
of Variations, we derive expressions for the power control
functions that (a) minimize an upperbound on outage prob-
ability, and (b) maximize a lowerbound on average mutual
information.

The probability of outage can be upperbounded by:

Pr(outage) ≤ Pr(Ilb(X;Y |ĥnew) < R′) (14)

where R′ = R T
T−M

.
As in the perfect CSIR case, we can derive the following

expression for the Lagrangian λ(γ):

λ(γ) =f
Γ̂
(γ̂) exp

(
−α(1 + σ2Pdp(γ̂))

p(γ̂)
− µγ̂

ν

)
α

p2(γ̂)

×
(

α(1 + σ2Pdp(γ̂))ν

p(γ̂)µγ̂

)M−1
2

× IM−1

(
2

√
µγ̂α(1 + σ2Pdp(γ̂))

νp(γ̂)

)
,

(15)

where ν =
Pt

M

Pt

M
+1

= 1 − σ2, α = (eR
−1)(µ+1)

P

M
ν

. We observe

that (15) is similar in form to (12).

C. Results and Observations
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Fig. 1. Outage probability curves for various values of ρ for M=2 Tx antennas
and R=2 nats/s/Hz with perfect CSIR

Fig. 1 shows the relationship between outage probability
and average SNR for various values of ρ for a system with
M = 2 transmit antennas and R = 2 nats/s/Hz. Fig. 2 shows
the optimal power control functions for the same system at an
average of SNR P = 20 dB with perfect CSIR. Fig. 3 shows
the relationship between outage probability and rate at a fixed
SNR of 20dB for M=2 antennas and perfect CSIR.

Fig. 4 compares the outage probability in the perfect CSIR
case with the upperbound in the imperfect CSIR case (with
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Fig. 2. Optimal power control functions for various values of ρ at average
SNR of 20 dB, M=2 Tx Antennas and R=2 nats/s/Hz with perfect CSIR
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Fig. 3. Outage Probability vs Rate for M=2 antennas at average SNR of 20
dB

optimal power-splitting) for M = 2 transmit antennas, R = 2
nats/s/Hzm and ρ = 0.9.

We can make the following observations:

• Outage probability falls rapidly as ρ approaches 1, but
is nearly constant as ρ increases from 0 to, say, 0.7.
We conjecture that this is because the outage probability
depends on µ = ρ2

1−ρ2 , which increases rapidly near
ρ = 1.

• From Fig. 2, we can see that the optimal power control
functions vary from no power control (p(γ) = 1) (which
is optimal at ρ = 0) to the waterfilling curve (which is
optimal for ρ = 1)

• From Fig. 3, we see that considerable gains can
be achieved by better feedback. For example, at
Pr(outage) = 10−4, we can transmit at a rate of 1.8
nats/s/Hz with ρ = 0.98, instead of 0.5 nats/s/Hz with
ρ = 0.1. The gain is lower for larger Pr(outage).

• From Fig. 4, we see that the upperbound on Pr(outage)
with imperfect CSIR and optimal power-splitting is quite
close to the value of Pr(outage) with perfect CSIR.
Moreover, the difference between the two curves reduces
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Fig. 4. Comparision between Pr(outage) for perfect and imperfect CSIR for
M = 2 antennas at R = 2 nats/s/Hz and ρ = 0.9

with an increase in average SNR. It is reasonable to
assume that these curves will be indistinguishable at
asymptotically high SNRs.

In addition, we have observed that it is necessary that the
power control function be matched to the exact value of ρ,
especially as ρ nears 1. For example, using the optimal power
control function for ρ = 1 when ρ is actually 0.98 results in
an outage probability of nearly 0.5 in the above case (M =
2, R = 2, SNR = 20dB). However an interesting question to
ask is what would happen if we consistently underestimated ρ.
For example, if we assumed that our estimate and the actual
SNR were statistically independent (ρ = 0) regardless of the
actual value of ρ, we would achieve an outage probability of
Pr(outage) = 8× 10−3, which is the same as that for ρ = 0.

IV. POWER CONTROL TO MAXIMIZE AVERAGE MUTUAL

INFORMATION

The method of solving for the optimal power control func-
tions that maximize the average mutual information for both
perfect and imperfect CSIR is very similar to the approach
used in the previous section. Therefore, we leave out the details
here, and instead give only the results.

A. Perfect CSIR

We use the Calculus of Variations approach to obtain

λ(γ) = EΓ,Ξ

(
P
M

ξ

1 + P
M

p(γ)ξ

)
, (16)

where γ = ‖hold‖2 and ξ = ‖hnew‖2.

B. Imperfect CSIR

As before, we use the Calculus of Variations approach to
obtain

λ(γ) = EΓ,Ξ

⎛
⎝ Pd

M
ξ̂

(1 + σ2Pdp(γ̂))
(
1 + Pdp(γ̂)(σ2 + ξ̂

M
)
)

⎞
⎠ ,

(17)
where γ̂ = ‖ĥold‖2 and ξ̂ = ‖ĥnew‖2.

C. Results and Observations

Fig. 5 shows the relationship between the average mutual
information, maximized over all possible power control func-
tions, and the average SNR, with perfect CSIR.

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Average SNR (dB) →

m
ax

 E
(I

(X
;Y

))
 (

na
ts

/s
/H

z)
 →

ρ=1

ρ=0

Fig. 5. Maximum average mutual information for M = 2 transmit antennas
for ρ = 0, 1 with perfect CSIR

• We have observed that the maximum average mutual
information is nearly independent of ρ. This was earlier
observed for M=1 by Varaiya and Goldsmith in [8].

• We have found, via numerical simulations, that the opti-
mal power control functions in this case nearly resemble
the case of no power control (p(γ) = 1 ∀ γ).

• We obtain similar results for the imperfect CSIR case, but
these are of limited use since average mutual information
is nearly independent of the correlation ρ.

V. CONCLUSIONS

In the preceding sections, we have derived implicit, closed-
form equations for the optimal power control functions with
respect to two metrics with the average SNR and the cross-
correlation ρ as parameters. The actual values of the power
control functions can be found by numerical methods. We
have observed that power control is of limited use when
the correlation between the actual SNR and the transmitter’s
estimate of SNR is not sufficiently high (of the order of 0.9,
say). Another caveat is that the performance of the optimal
power control functions depends heavily on the accuracy of the
estimates of the parameters, especially the correlation ρ. We
have also observed that power control does not significantly
improve the average mutual information, and hence of not
much use when performing rate control.

APPENDIX

PROOF OF EQUATION (13)

To prove (13), we first rewrite the system equation as:

y =

√
P

M
p(γ̂)ĥT

newx + n̂, (18)
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where n̂ =
√

P
M

p(γ̂)(h − ĥnew)T x + n. We observe that n̂

possesses the following properties [4]:

E(n̂x†|ĥnew) = 0 (19)

E(|n̂|2|ĥnew) = 1 + σ2Pd (20)

To begin the derivation of (13), we write

I(X;Y |ĥnew) =H(X|ĥnew) − H(X|Y, ĥnew)

=H(X|ĥnew) − H(X − gY |Y, ĥnew)

≥H(X|ĥnew) − H(X − gY |ĥnew)

(21)

The first term in the RHS above, H(X|ĥnew), can be upper-
bounded using the Gaussian upperbound:

H(X|ĥnew) ≤ log(det(πeQ)). (22)

This bound is achieved if x is chosen to be Gaussian. There-
fore, for Gaussian x, (21) can be rewritten as

I(X;Y |ĥnew) ≥ T − M

T
( log(det(πeQ))

− log(det((x − gy)(x − gy)†))).
(23)

We must now choose g appropriately. Here we choose g to
be the MMSE estimator of x, given y:

g =
Pd

M

Pd

M
‖ĥnew‖2 + E(|n̂|2|ĥnew)

ĥ†

new (24)

After appropriately simplifying (21), (similar to Appendix
A in [4]), we get

I(X;Y |ĥnew) ≥T − M

T
log

(
1 +

Pdp(γ̂)ξ̂

M (1 + σ2Pdp(γ̂))

)

=
T − M

T
Ilb(X;Y |ĥnew).

(25)

This bound can be further tightened by maximizing the
argument of the log() term over all possible (Pt, Pd), subject
to the total power constraint

Pt + (T − M)Pd = PT. (26)

Using the method of Lagrangian multipliers, we can show that
the optimal Pd must satisfy

(T − M)(T − 2M)P 2

d−2(T − M)(PT + M)Pd

+ PT (PT − M) = 0
(27)

This equation has already been derived, using a different
method, in [6].
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